Enter a problem...
Trigonometry Examples
Step 1
For the equation to be equal, the argument of the logarithms on both sides of the equation must be equal.
Step 2
Step 2.1
Subtract from both sides of the equation.
Step 2.2
Factor out of .
Step 2.2.1
Factor out of .
Step 2.2.2
Factor out of .
Step 2.2.3
Factor out of .
Step 2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.4
Set equal to .
Step 2.5
Set equal to and solve for .
Step 2.5.1
Set equal to .
Step 2.5.2
Solve for .
Step 2.5.2.1
Subtract from both sides of the equation.
Step 2.5.2.2
Divide each term in by and simplify.
Step 2.5.2.2.1
Divide each term in by .
Step 2.5.2.2.2
Simplify the left side.
Step 2.5.2.2.2.1
Dividing two negative values results in a positive value.
Step 2.5.2.2.2.2
Divide by .
Step 2.5.2.2.3
Simplify the right side.
Step 2.5.2.2.3.1
Divide by .
Step 2.5.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.6
The final solution is all the values that make true.
Step 3
Exclude the solutions that do not make true.
Step 4
The result can be shown in multiple forms.
Exact Form:
Decimal Form: