Enter a problem...
Trigonometry Examples
Step 1
Take the inverse tangent of both sides of the equation to extract from inside the tangent.
Step 2
Step 2.1
Evaluate .
Step 3
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Subtract from .
Step 4
Step 4.1
Divide each term in by .
Step 4.2
Simplify the left side.
Step 4.2.1
Cancel the common factor of .
Step 4.2.1.1
Cancel the common factor.
Step 4.2.1.2
Divide by .
Step 4.3
Simplify the right side.
Step 4.3.1
Divide by .
Step 5
The tangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from to find the solution in the fourth quadrant.
Step 6
Step 6.1
Add and .
Step 6.2
Move all terms not containing to the right side of the equation.
Step 6.2.1
Subtract from both sides of the equation.
Step 6.2.2
Subtract from .
Step 6.3
Divide each term in by and simplify.
Step 6.3.1
Divide each term in by .
Step 6.3.2
Simplify the left side.
Step 6.3.2.1
Cancel the common factor of .
Step 6.3.2.1.1
Cancel the common factor.
Step 6.3.2.1.2
Divide by .
Step 6.3.3
Simplify the right side.
Step 6.3.3.1
Divide by .
Step 7
Step 7.1
The period of the function can be calculated using .
Step 7.2
Replace with in the formula for period.
Step 7.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 8
The period of the function is so values will repeat every radians in both directions.
, for any integer
Step 9
Consolidate and to .
, for any integer