Trigonometry Examples

Solve for x sin(2x-pi/2)=-1
Step 1
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 2
Simplify the right side.
Tap for more steps...
Step 2.1
The exact value of is .
Step 3
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 3.1
Add to both sides of the equation.
Step 3.2
Combine the numerators over the common denominator.
Step 3.3
Add and .
Step 3.4
Divide by .
Step 4
Divide each term in by and simplify.
Tap for more steps...
Step 4.1
Divide each term in by .
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Cancel the common factor of .
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
Step 4.2.1.2
Divide by .
Step 4.3
Simplify the right side.
Tap for more steps...
Step 4.3.1
Divide by .
Step 5
The sine function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Step 6
Simplify the expression to find the second solution.
Tap for more steps...
Step 6.1
Subtract from .
Step 6.2
The resulting angle of is positive, less than , and coterminal with .
Step 6.3
Solve for .
Tap for more steps...
Step 6.3.1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 6.3.1.1
Add to both sides of the equation.
Step 6.3.1.2
Combine the numerators over the common denominator.
Step 6.3.1.3
Add and .
Step 6.3.1.4
Cancel the common factor of and .
Tap for more steps...
Step 6.3.1.4.1
Factor out of .
Step 6.3.1.4.2
Cancel the common factors.
Tap for more steps...
Step 6.3.1.4.2.1
Factor out of .
Step 6.3.1.4.2.2
Cancel the common factor.
Step 6.3.1.4.2.3
Rewrite the expression.
Step 6.3.1.4.2.4
Divide by .
Step 6.3.2
Divide each term in by and simplify.
Tap for more steps...
Step 6.3.2.1
Divide each term in by .
Step 6.3.2.2
Simplify the left side.
Tap for more steps...
Step 6.3.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 6.3.2.2.1.1
Cancel the common factor.
Step 6.3.2.2.1.2
Divide by .
Step 6.3.2.3
Simplify the right side.
Tap for more steps...
Step 6.3.2.3.1
Cancel the common factor of .
Tap for more steps...
Step 6.3.2.3.1.1
Cancel the common factor.
Step 6.3.2.3.1.2
Divide by .
Step 7
Find the period of .
Tap for more steps...
Step 7.1
The period of the function can be calculated using .
Step 7.2
Replace with in the formula for period.
Step 7.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 7.4
Cancel the common factor of .
Tap for more steps...
Step 7.4.1
Cancel the common factor.
Step 7.4.2
Divide by .
Step 8
The period of the function is so values will repeat every radians in both directions.
, for any integer
Step 9
Consolidate the answers.
, for any integer