Enter a problem...
Trigonometry Examples
y=x-16(x√2⋅105)2y=x−16(x√2⋅105)2
Step 1
Rewrite the equation as x-16(x√2⋅105)2=yx−16(x√2⋅105)2=y.
x-16(x√2⋅105)2=yx−16(x√2⋅105)2=y
Step 2
Step 2.1
Move 105105 to the left of √2√2.
x-16(x105√2)2=yx−16(x105√2)2=y
Step 2.2
Multiply x105√2x105√2 by √2√2√2√2.
x-16(x105√2⋅√2√2)2=yx−16(x105√2⋅√2√2)2=y
Step 2.3
Combine and simplify the denominator.
Step 2.3.1
Multiply x105√2x105√2 by √2√2√2√2.
x-16(x√2105√2√2)2=yx−16(x√2105√2√2)2=y
Step 2.3.2
Move √2√2.
x-16(x√2105(√2√2))2=yx−16⎛⎜⎝x√2105(√2√2)⎞⎟⎠2=y
Step 2.3.3
Raise √2√2 to the power of 11.
x-16(x√2105(√21√2))2=yx−16⎛⎜⎝x√2105(√21√2)⎞⎟⎠2=y
Step 2.3.4
Raise √2√2 to the power of 11.
x-16(x√2105(√21√21))2=yx−16⎛⎜⎝x√2105(√21√21)⎞⎟⎠2=y
Step 2.3.5
Use the power rule aman=am+naman=am+n to combine exponents.
x-16(x√2105√21+1)2=yx−16(x√2105√21+1)2=y
Step 2.3.6
Add 11 and 11.
x-16(x√2105√22)2=yx−16(x√2105√22)2=y
Step 2.3.7
Rewrite √22√22 as 22.
Step 2.3.7.1
Use n√ax=axnn√ax=axn to rewrite √2√2 as 212212.
x-16(x√2105(212)2)2=yx−16⎛⎜
⎜⎝x√2105(212)2⎞⎟
⎟⎠2=y
Step 2.3.7.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
x-16(x√2105⋅212⋅2)2=yx−16(x√2105⋅212⋅2)2=y
Step 2.3.7.3
Combine 1212 and 22.
x-16(x√2105⋅222)2=yx−16(x√2105⋅222)2=y
Step 2.3.7.4
Cancel the common factor of 22.
Step 2.3.7.4.1
Cancel the common factor.
x-16(x√2105⋅222)2=y
Step 2.3.7.4.2
Rewrite the expression.
x-16(x√2105⋅21)2=y
x-16(x√2105⋅21)2=y
Step 2.3.7.5
Evaluate the exponent.
x-16(x√2105⋅2)2=y
x-16(x√2105⋅2)2=y
x-16(x√2105⋅2)2=y
Step 2.4
Multiply 105 by 2.
x-16(x√2210)2=y
Step 2.5
Use the power rule (ab)n=anbn to distribute the exponent.
Step 2.5.1
Apply the product rule to x√2210.
x-16(x√2)22102=y
Step 2.5.2
Apply the product rule to x√2.
x-16x2√222102=y
x-16x2√222102=y
Step 2.6
Rewrite √22 as 2.
Step 2.6.1
Use n√ax=axn to rewrite √2 as 212.
x-16x2(212)22102=y
Step 2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
x-16x2⋅212⋅22102=y
Step 2.6.3
Combine 12 and 2.
x-16x2⋅2222102=y
Step 2.6.4
Cancel the common factor of 2.
Step 2.6.4.1
Cancel the common factor.
x-16x2⋅2222102=y
Step 2.6.4.2
Rewrite the expression.
x-16x2⋅212102=y
x-16x2⋅212102=y
Step 2.6.5
Evaluate the exponent.
x-16x2⋅22102=y
x-16x2⋅22102=y
Step 2.7
Raise 210 to the power of 2.
x-16x2⋅244100=y
Step 2.8
Cancel the common factor of 4.
Step 2.8.1
Factor 4 out of -16.
x+4(-4)x2⋅244100=y
Step 2.8.2
Factor 4 out of 44100.
x+4⋅-4x2⋅24⋅11025=y
Step 2.8.3
Cancel the common factor.
x+4⋅-4x2⋅24⋅11025=y
Step 2.8.4
Rewrite the expression.
x-4x2⋅211025=y
x-4x2⋅211025=y
Step 2.9
Combine -4 and x2⋅211025.
x+-4(x2⋅2)11025=y
Step 2.10
Multiply 2 by -4.
x+-8x211025=y
Step 2.11
Move the negative in front of the fraction.
x-8x211025=y
x-8x211025=y
Step 3
Subtract y from both sides of the equation.
x-8x211025-y=0
Step 4
Step 4.1
Apply the distributive property.
11025x+11025(-8x211025)+11025(-y)=0
Step 4.2
Simplify.
Step 4.2.1
Cancel the common factor of 11025.
Step 4.2.1.1
Move the leading negative in -8x211025 into the numerator.
11025x+11025(-8x211025)+11025(-y)=0
Step 4.2.1.2
Cancel the common factor.
11025x+11025(-8x211025)+11025(-y)=0
Step 4.2.1.3
Rewrite the expression.
11025x-8x2+11025(-y)=0
11025x-8x2+11025(-y)=0
Step 4.2.2
Multiply -1 by 11025.
11025x-8x2-11025y=0
11025x-8x2-11025y=0
Step 4.3
Move 11025x.
-8x2-11025y+11025x=0
-8x2-11025y+11025x=0
Step 5
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 6
Substitute the values a=-8, b=11025, and c=-11025y into the quadratic formula and solve for x.
-11025±√110252-4⋅(-8⋅(-11025y))2⋅-8
Step 7
Step 7.1
Simplify the numerator.
Step 7.1.1
Raise 11025 to the power of 2.
x=-11025±√121550625-4⋅-8⋅(-11025y)2⋅-8
Step 7.1.2
Multiply -4⋅-8⋅-11025.
Step 7.1.2.1
Multiply -4 by -8.
x=-11025±√121550625+32⋅(-11025y)2⋅-8
Step 7.1.2.2
Multiply 32 by -11025.
x=-11025±√121550625-352800y2⋅-8
x=-11025±√121550625-352800y2⋅-8
Step 7.1.3
Factor 11025 out of 121550625-352800y.
Step 7.1.3.1
Factor 11025 out of 121550625.
x=-11025±√11025(11025)-352800y2⋅-8
Step 7.1.3.2
Factor 11025 out of -352800y.
x=-11025±√11025(11025)+11025(-32y)2⋅-8
Step 7.1.3.3
Factor 11025 out of 11025(11025)+11025(-32y).
x=-11025±√11025(11025-32y)2⋅-8
x=-11025±√11025(11025-32y)2⋅-8
Step 7.1.4
Rewrite 11025(11025-32y) as 1052(1052-32y).
Step 7.1.4.1
Rewrite 11025 as 1052.
x=-11025±√1052(11025-32y)2⋅-8
Step 7.1.4.2
Rewrite 11025 as 1052.
x=-11025±√1052(1052-32y)2⋅-8
x=-11025±√1052(1052-32y)2⋅-8
Step 7.1.5
Pull terms out from under the radical.
x=-11025±105√1052-32y2⋅-8
Step 7.1.6
Raise 105 to the power of 2.
x=-11025±105√11025-32y2⋅-8
x=-11025±105√11025-32y2⋅-8
Step 7.2
Multiply 2 by -8.
x=-11025±105√11025-32y-16
Step 7.3
Simplify -11025±105√11025-32y-16.
x=11025±105√11025-32y16
x=11025±105√11025-32y16
Step 8
The final answer is the combination of both solutions.
x=105(105+√11025-32y)16
x=105(105-√11025-32y)16