Trigonometry Examples

Solve for x y=x-16(x/( square root of 2*105))^2
y=x-16(x2105)2y=x16(x2105)2
Step 1
Rewrite the equation as x-16(x2105)2=yx16(x2105)2=y.
x-16(x2105)2=yx16(x2105)2=y
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Move 105105 to the left of 22.
x-16(x1052)2=yx16(x1052)2=y
Step 2.2
Multiply x1052x1052 by 2222.
x-16(x105222)2=yx16(x105222)2=y
Step 2.3
Combine and simplify the denominator.
Tap for more steps...
Step 2.3.1
Multiply x1052x1052 by 2222.
x-16(x210522)2=yx16(x210522)2=y
Step 2.3.2
Move 22.
x-16(x2105(22))2=yx16x2105(22)2=y
Step 2.3.3
Raise 22 to the power of 11.
x-16(x2105(212))2=yx16x2105(212)2=y
Step 2.3.4
Raise 22 to the power of 11.
x-16(x2105(2121))2=yx16x2105(2121)2=y
Step 2.3.5
Use the power rule aman=am+naman=am+n to combine exponents.
x-16(x210521+1)2=yx16(x210521+1)2=y
Step 2.3.6
Add 11 and 11.
x-16(x210522)2=yx16(x210522)2=y
Step 2.3.7
Rewrite 2222 as 22.
Tap for more steps...
Step 2.3.7.1
Use nax=axnnax=axn to rewrite 22 as 212212.
x-16(x2105(212)2)2=yx16⎜ ⎜x2105(212)2⎟ ⎟2=y
Step 2.3.7.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
x-16(x21052122)2=yx16(x21052122)2=y
Step 2.3.7.3
Combine 1212 and 22.
x-16(x2105222)2=yx16(x2105222)2=y
Step 2.3.7.4
Cancel the common factor of 22.
Tap for more steps...
Step 2.3.7.4.1
Cancel the common factor.
x-16(x2105222)2=y
Step 2.3.7.4.2
Rewrite the expression.
x-16(x210521)2=y
x-16(x210521)2=y
Step 2.3.7.5
Evaluate the exponent.
x-16(x21052)2=y
x-16(x21052)2=y
x-16(x21052)2=y
Step 2.4
Multiply 105 by 2.
x-16(x2210)2=y
Step 2.5
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 2.5.1
Apply the product rule to x2210.
x-16(x2)22102=y
Step 2.5.2
Apply the product rule to x2.
x-16x2222102=y
x-16x2222102=y
Step 2.6
Rewrite 22 as 2.
Tap for more steps...
Step 2.6.1
Use nax=axn to rewrite 2 as 212.
x-16x2(212)22102=y
Step 2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
x-16x221222102=y
Step 2.6.3
Combine 12 and 2.
x-16x22222102=y
Step 2.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.6.4.1
Cancel the common factor.
x-16x22222102=y
Step 2.6.4.2
Rewrite the expression.
x-16x2212102=y
x-16x2212102=y
Step 2.6.5
Evaluate the exponent.
x-16x222102=y
x-16x222102=y
Step 2.7
Raise 210 to the power of 2.
x-16x2244100=y
Step 2.8
Cancel the common factor of 4.
Tap for more steps...
Step 2.8.1
Factor 4 out of -16.
x+4(-4)x2244100=y
Step 2.8.2
Factor 4 out of 44100.
x+4-4x22411025=y
Step 2.8.3
Cancel the common factor.
x+4-4x22411025=y
Step 2.8.4
Rewrite the expression.
x-4x2211025=y
x-4x2211025=y
Step 2.9
Combine -4 and x2211025.
x+-4(x22)11025=y
Step 2.10
Multiply 2 by -4.
x+-8x211025=y
Step 2.11
Move the negative in front of the fraction.
x-8x211025=y
x-8x211025=y
Step 3
Subtract y from both sides of the equation.
x-8x211025-y=0
Step 4
Multiply through by the least common denominator 11025, then simplify.
Tap for more steps...
Step 4.1
Apply the distributive property.
11025x+11025(-8x211025)+11025(-y)=0
Step 4.2
Simplify.
Tap for more steps...
Step 4.2.1
Cancel the common factor of 11025.
Tap for more steps...
Step 4.2.1.1
Move the leading negative in -8x211025 into the numerator.
11025x+11025(-8x211025)+11025(-y)=0
Step 4.2.1.2
Cancel the common factor.
11025x+11025(-8x211025)+11025(-y)=0
Step 4.2.1.3
Rewrite the expression.
11025x-8x2+11025(-y)=0
11025x-8x2+11025(-y)=0
Step 4.2.2
Multiply -1 by 11025.
11025x-8x2-11025y=0
11025x-8x2-11025y=0
Step 4.3
Move 11025x.
-8x2-11025y+11025x=0
-8x2-11025y+11025x=0
Step 5
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 6
Substitute the values a=-8, b=11025, and c=-11025y into the quadratic formula and solve for x.
-11025±110252-4(-8(-11025y))2-8
Step 7
Simplify.
Tap for more steps...
Step 7.1
Simplify the numerator.
Tap for more steps...
Step 7.1.1
Raise 11025 to the power of 2.
x=-11025±121550625-4-8(-11025y)2-8
Step 7.1.2
Multiply -4-8-11025.
Tap for more steps...
Step 7.1.2.1
Multiply -4 by -8.
x=-11025±121550625+32(-11025y)2-8
Step 7.1.2.2
Multiply 32 by -11025.
x=-11025±121550625-352800y2-8
x=-11025±121550625-352800y2-8
Step 7.1.3
Factor 11025 out of 121550625-352800y.
Tap for more steps...
Step 7.1.3.1
Factor 11025 out of 121550625.
x=-11025±11025(11025)-352800y2-8
Step 7.1.3.2
Factor 11025 out of -352800y.
x=-11025±11025(11025)+11025(-32y)2-8
Step 7.1.3.3
Factor 11025 out of 11025(11025)+11025(-32y).
x=-11025±11025(11025-32y)2-8
x=-11025±11025(11025-32y)2-8
Step 7.1.4
Rewrite 11025(11025-32y) as 1052(1052-32y).
Tap for more steps...
Step 7.1.4.1
Rewrite 11025 as 1052.
x=-11025±1052(11025-32y)2-8
Step 7.1.4.2
Rewrite 11025 as 1052.
x=-11025±1052(1052-32y)2-8
x=-11025±1052(1052-32y)2-8
Step 7.1.5
Pull terms out from under the radical.
x=-11025±1051052-32y2-8
Step 7.1.6
Raise 105 to the power of 2.
x=-11025±10511025-32y2-8
x=-11025±10511025-32y2-8
Step 7.2
Multiply 2 by -8.
x=-11025±10511025-32y-16
Step 7.3
Simplify -11025±10511025-32y-16.
x=11025±10511025-32y16
x=11025±10511025-32y16
Step 8
The final answer is the combination of both solutions.
x=105(105+11025-32y)16
x=105(105-11025-32y)16
 [x2  12  π  xdx ]