Enter a problem...
Trigonometry Examples
Step 1
Interchange the variables.
Step 2
Step 2.1
Rewrite the equation as .
Step 2.2
Multiply both sides by .
Step 2.3
Simplify the left side.
Step 2.3.1
Cancel the common factor of .
Step 2.3.1.1
Cancel the common factor.
Step 2.3.1.2
Rewrite the expression.
Step 2.4
Solve for .
Step 2.4.1
Use the double-angle identity to transform to .
Step 2.4.2
Subtract from both sides of the equation.
Step 2.4.3
Subtract from both sides of the equation.
Step 2.4.4
Solve the equation for .
Step 2.4.4.1
Substitute for .
Step 2.4.4.2
Add to both sides of the equation.
Step 2.4.4.3
Use the quadratic formula to find the solutions.
Step 2.4.4.4
Substitute the values , , and into the quadratic formula and solve for .
Step 2.4.4.5
Simplify.
Step 2.4.4.5.1
Simplify the numerator.
Step 2.4.4.5.1.1
Apply the product rule to .
Step 2.4.4.5.1.2
Raise to the power of .
Step 2.4.4.5.1.3
Multiply by .
Step 2.4.4.5.1.4
Multiply .
Step 2.4.4.5.1.4.1
Multiply by .
Step 2.4.4.5.1.4.2
Multiply by .
Step 2.4.4.5.2
Multiply by .
Step 2.4.4.5.3
Move the negative in front of the fraction.
Step 2.4.4.6
Simplify the expression to solve for the portion of the .
Step 2.4.4.6.1
Simplify the numerator.
Step 2.4.4.6.1.1
Apply the product rule to .
Step 2.4.4.6.1.2
Raise to the power of .
Step 2.4.4.6.1.3
Multiply by .
Step 2.4.4.6.1.4
Multiply .
Step 2.4.4.6.1.4.1
Multiply by .
Step 2.4.4.6.1.4.2
Multiply by .
Step 2.4.4.6.2
Multiply by .
Step 2.4.4.6.3
Move the negative in front of the fraction.
Step 2.4.4.6.4
Change the to .
Step 2.4.4.7
Simplify the expression to solve for the portion of the .
Step 2.4.4.7.1
Simplify the numerator.
Step 2.4.4.7.1.1
Apply the product rule to .
Step 2.4.4.7.1.2
Raise to the power of .
Step 2.4.4.7.1.3
Multiply by .
Step 2.4.4.7.1.4
Multiply .
Step 2.4.4.7.1.4.1
Multiply by .
Step 2.4.4.7.1.4.2
Multiply by .
Step 2.4.4.7.2
Multiply by .
Step 2.4.4.7.3
Move the negative in front of the fraction.
Step 2.4.4.7.4
Change the to .
Step 2.4.4.8
The final answer is the combination of both solutions.
Step 2.4.4.9
Substitute for .
Step 2.4.4.10
Set up each of the solutions to solve for .
Step 2.4.4.11
Solve for in .
Step 2.4.4.11.1
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 2.4.4.11.2
Simplify the right side.
Step 2.4.4.11.2.1
Simplify .
Step 2.4.4.11.2.1.1
Split the fraction into two fractions.
Step 2.4.4.11.2.1.2
Apply the distributive property.
Step 2.4.4.11.3
Simplify the right side.
Step 2.4.4.11.3.1
Combine the numerators over the common denominator.
Step 2.4.4.12
Solve for in .
Step 2.4.4.12.1
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 2.4.4.12.2
Simplify the right side.
Step 2.4.4.12.2.1
Simplify .
Step 2.4.4.12.2.1.1
Split the fraction into two fractions.
Step 2.4.4.12.2.1.2
Move the negative in front of the fraction.
Step 2.4.4.12.2.1.3
Apply the distributive property.
Step 2.4.4.12.2.1.4
Multiply .
Step 2.4.4.12.2.1.4.1
Multiply by .
Step 2.4.4.12.2.1.4.2
Multiply by .
Step 2.4.4.12.3
Simplify the right side.
Step 2.4.4.12.3.1
Combine the numerators over the common denominator.
Step 2.4.4.13
List all of the solutions.
Step 3
Replace with to show the final answer.
Step 4
Step 4.1
The domain of the inverse is the range of the original function and vice versa. Find the domain and the range of and and compare them.
Step 4.2
Find the range of .
Step 4.2.1
The range is the set of all valid values. Use the graph to find the range.
Interval Notation:
Step 4.3
Find the domain of the inverse.
Step 4.3.1
Find the domain of .
Step 4.3.1.1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 4.3.1.2
Solve for .
Step 4.3.1.2.1
Subtract from both sides of the inequality.
Step 4.3.1.2.2
Since the left side has an even power, it is always positive for all real numbers.
All real numbers
All real numbers
Step 4.3.1.3
Set the argument in greater than or equal to to find where the expression is defined.
Step 4.3.1.4
Solve for .
Step 4.3.1.4.1
Multiply both sides by .
Step 4.3.1.4.2
Simplify.
Step 4.3.1.4.2.1
Simplify the left side.
Step 4.3.1.4.2.1.1
Cancel the common factor of .
Step 4.3.1.4.2.1.1.1
Cancel the common factor.
Step 4.3.1.4.2.1.1.2
Rewrite the expression.
Step 4.3.1.4.2.2
Simplify the right side.
Step 4.3.1.4.2.2.1
Multiply by .
Step 4.3.1.4.3
Solve for .
Step 4.3.1.4.3.1
Add to both sides of the inequality.
Step 4.3.1.4.3.2
To remove the radical on the left side of the inequality, square both sides of the inequality.
Step 4.3.1.4.3.3
Simplify each side of the inequality.
Step 4.3.1.4.3.3.1
Use to rewrite as .
Step 4.3.1.4.3.3.2
Simplify the left side.
Step 4.3.1.4.3.3.2.1
Simplify .
Step 4.3.1.4.3.3.2.1.1
Apply the product rule to .
Step 4.3.1.4.3.3.2.1.2
Raise to the power of .
Step 4.3.1.4.3.3.2.1.3
Multiply by .
Step 4.3.1.4.3.3.2.1.4
Multiply the exponents in .
Step 4.3.1.4.3.3.2.1.4.1
Apply the power rule and multiply exponents, .
Step 4.3.1.4.3.3.2.1.4.2
Cancel the common factor of .
Step 4.3.1.4.3.3.2.1.4.2.1
Cancel the common factor.
Step 4.3.1.4.3.3.2.1.4.2.2
Rewrite the expression.
Step 4.3.1.4.3.3.2.1.5
Simplify.
Step 4.3.1.4.3.3.3
Simplify the right side.
Step 4.3.1.4.3.3.3.1
Simplify .
Step 4.3.1.4.3.3.3.1.1
Rewrite as .
Step 4.3.1.4.3.3.3.1.2
Expand using the FOIL Method.
Step 4.3.1.4.3.3.3.1.2.1
Apply the distributive property.
Step 4.3.1.4.3.3.3.1.2.2
Apply the distributive property.
Step 4.3.1.4.3.3.3.1.2.3
Apply the distributive property.
Step 4.3.1.4.3.3.3.1.3
Simplify and combine like terms.
Step 4.3.1.4.3.3.3.1.3.1
Simplify each term.
Step 4.3.1.4.3.3.3.1.3.1.1
Multiply by .
Step 4.3.1.4.3.3.3.1.3.1.2
Move to the left of .
Step 4.3.1.4.3.3.3.1.3.1.3
Multiply by .
Step 4.3.1.4.3.3.3.1.3.2
Subtract from .
Step 4.3.1.4.3.4
Solve for .
Step 4.3.1.4.3.4.1
Rewrite so is on the left side of the inequality.
Step 4.3.1.4.3.4.2
Move all terms containing to the left side of the inequality.
Step 4.3.1.4.3.4.2.1
Subtract from both sides of the inequality.
Step 4.3.1.4.3.4.2.2
Combine the opposite terms in .
Step 4.3.1.4.3.4.2.2.1
Subtract from .
Step 4.3.1.4.3.4.2.2.2
Add and .
Step 4.3.1.4.3.4.3
Move all terms not containing to the right side of the inequality.
Step 4.3.1.4.3.4.3.1
Subtract from both sides of the inequality.
Step 4.3.1.4.3.4.3.2
Subtract from .
Step 4.3.1.4.3.4.4
Divide each term in by and simplify.
Step 4.3.1.4.3.4.4.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 4.3.1.4.3.4.4.2
Simplify the left side.
Step 4.3.1.4.3.4.4.2.1
Cancel the common factor of .
Step 4.3.1.4.3.4.4.2.1.1
Cancel the common factor.
Step 4.3.1.4.3.4.4.2.1.2
Divide by .
Step 4.3.1.4.3.4.4.3
Simplify the right side.
Step 4.3.1.4.3.4.4.3.1
Divide by .
Step 4.3.1.4.4
The solution consists of all of the true intervals.
Step 4.3.1.5
Set the argument in less than or equal to to find where the expression is defined.
Step 4.3.1.6
Solve for .
Step 4.3.1.6.1
Multiply both sides by .
Step 4.3.1.6.2
Simplify.
Step 4.3.1.6.2.1
Simplify the left side.
Step 4.3.1.6.2.1.1
Cancel the common factor of .
Step 4.3.1.6.2.1.1.1
Cancel the common factor.
Step 4.3.1.6.2.1.1.2
Rewrite the expression.
Step 4.3.1.6.2.2
Simplify the right side.
Step 4.3.1.6.2.2.1
Multiply by .
Step 4.3.1.6.3
Solve for .
Step 4.3.1.6.3.1
Add to both sides of the inequality.
Step 4.3.1.6.3.2
To remove the radical on the left side of the inequality, square both sides of the inequality.
Step 4.3.1.6.3.3
Simplify each side of the inequality.
Step 4.3.1.6.3.3.1
Use to rewrite as .
Step 4.3.1.6.3.3.2
Simplify the left side.
Step 4.3.1.6.3.3.2.1
Simplify .
Step 4.3.1.6.3.3.2.1.1
Apply the product rule to .
Step 4.3.1.6.3.3.2.1.2
Raise to the power of .
Step 4.3.1.6.3.3.2.1.3
Multiply by .
Step 4.3.1.6.3.3.2.1.4
Multiply the exponents in .
Step 4.3.1.6.3.3.2.1.4.1
Apply the power rule and multiply exponents, .
Step 4.3.1.6.3.3.2.1.4.2
Cancel the common factor of .
Step 4.3.1.6.3.3.2.1.4.2.1
Cancel the common factor.
Step 4.3.1.6.3.3.2.1.4.2.2
Rewrite the expression.
Step 4.3.1.6.3.3.2.1.5
Simplify.
Step 4.3.1.6.3.3.3
Simplify the right side.
Step 4.3.1.6.3.3.3.1
Simplify .
Step 4.3.1.6.3.3.3.1.1
Rewrite as .
Step 4.3.1.6.3.3.3.1.2
Expand using the FOIL Method.
Step 4.3.1.6.3.3.3.1.2.1
Apply the distributive property.
Step 4.3.1.6.3.3.3.1.2.2
Apply the distributive property.
Step 4.3.1.6.3.3.3.1.2.3
Apply the distributive property.
Step 4.3.1.6.3.3.3.1.3
Simplify and combine like terms.
Step 4.3.1.6.3.3.3.1.3.1
Simplify each term.
Step 4.3.1.6.3.3.3.1.3.1.1
Multiply by .
Step 4.3.1.6.3.3.3.1.3.1.2
Move to the left of .
Step 4.3.1.6.3.3.3.1.3.1.3
Multiply by .
Step 4.3.1.6.3.3.3.1.3.2
Add and .
Step 4.3.1.6.3.4
Solve for .
Step 4.3.1.6.3.4.1
Rewrite so is on the left side of the inequality.
Step 4.3.1.6.3.4.2
Move all terms containing to the left side of the inequality.
Step 4.3.1.6.3.4.2.1
Subtract from both sides of the inequality.
Step 4.3.1.6.3.4.2.2
Combine the opposite terms in .
Step 4.3.1.6.3.4.2.2.1
Subtract from .
Step 4.3.1.6.3.4.2.2.2
Add and .
Step 4.3.1.6.3.4.3
Move all terms not containing to the right side of the inequality.
Step 4.3.1.6.3.4.3.1
Subtract from both sides of the inequality.
Step 4.3.1.6.3.4.3.2
Subtract from .
Step 4.3.1.6.3.4.4
Divide each term in by and simplify.
Step 4.3.1.6.3.4.4.1
Divide each term in by .
Step 4.3.1.6.3.4.4.2
Simplify the left side.
Step 4.3.1.6.3.4.4.2.1
Cancel the common factor of .
Step 4.3.1.6.3.4.4.2.1.1
Cancel the common factor.
Step 4.3.1.6.3.4.4.2.1.2
Divide by .
Step 4.3.1.6.3.4.4.3
Simplify the right side.
Step 4.3.1.6.3.4.4.3.1
Divide by .
Step 4.3.1.6.4
Use each root to create test intervals.
Step 4.3.1.6.5
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Step 4.3.1.6.5.1
Test a value on the interval to see if it makes the inequality true.
Step 4.3.1.6.5.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 4.3.1.6.5.1.2
Replace with in the original inequality.
Step 4.3.1.6.5.1.3
The left side is less than the right side , which means that the given statement is always true.
True
True
Step 4.3.1.6.5.2
Test a value on the interval to see if it makes the inequality true.
Step 4.3.1.6.5.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 4.3.1.6.5.2.2
Replace with in the original inequality.
Step 4.3.1.6.5.2.3
The left side is less than the right side , which means that the given statement is always true.
True
True
Step 4.3.1.6.5.3
Compare the intervals to determine which ones satisfy the original inequality.
True
True
True
True
Step 4.3.1.6.6
The solution consists of all of the true intervals.
or
Step 4.3.1.6.7
Combine the intervals.
All real numbers
All real numbers
Step 4.3.1.7
The domain is all values of that make the expression defined.
Step 4.3.2
Find the domain of .
Step 4.3.2.1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 4.3.2.2
Solve for .
Step 4.3.2.2.1
Subtract from both sides of the inequality.
Step 4.3.2.2.2
Since the left side has an even power, it is always positive for all real numbers.
All real numbers
All real numbers
Step 4.3.2.3
Set the argument in greater than or equal to to find where the expression is defined.
Step 4.3.2.4
Solve for .
Step 4.3.2.4.1
Multiply both sides by .
Step 4.3.2.4.2
Simplify.
Step 4.3.2.4.2.1
Simplify the left side.
Step 4.3.2.4.2.1.1
Cancel the common factor of .
Step 4.3.2.4.2.1.1.1
Cancel the common factor.
Step 4.3.2.4.2.1.1.2
Rewrite the expression.
Step 4.3.2.4.2.2
Simplify the right side.
Step 4.3.2.4.2.2.1
Multiply by .
Step 4.3.2.4.3
Solve for .
Step 4.3.2.4.3.1
Add to both sides of the inequality.
Step 4.3.2.4.3.2
To remove the radical on the left side of the inequality, square both sides of the inequality.
Step 4.3.2.4.3.3
Simplify each side of the inequality.
Step 4.3.2.4.3.3.1
Use to rewrite as .
Step 4.3.2.4.3.3.2
Simplify the left side.
Step 4.3.2.4.3.3.2.1
Simplify .
Step 4.3.2.4.3.3.2.1.1
Multiply the exponents in .
Step 4.3.2.4.3.3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 4.3.2.4.3.3.2.1.1.2
Cancel the common factor of .
Step 4.3.2.4.3.3.2.1.1.2.1
Cancel the common factor.
Step 4.3.2.4.3.3.2.1.1.2.2
Rewrite the expression.
Step 4.3.2.4.3.3.2.1.2
Simplify.
Step 4.3.2.4.3.3.3
Simplify the right side.
Step 4.3.2.4.3.3.3.1
Simplify .
Step 4.3.2.4.3.3.3.1.1
Rewrite as .
Step 4.3.2.4.3.3.3.1.2
Expand using the FOIL Method.
Step 4.3.2.4.3.3.3.1.2.1
Apply the distributive property.
Step 4.3.2.4.3.3.3.1.2.2
Apply the distributive property.
Step 4.3.2.4.3.3.3.1.2.3
Apply the distributive property.
Step 4.3.2.4.3.3.3.1.3
Simplify and combine like terms.
Step 4.3.2.4.3.3.3.1.3.1
Simplify each term.
Step 4.3.2.4.3.3.3.1.3.1.1
Multiply by .
Step 4.3.2.4.3.3.3.1.3.1.2
Move to the left of .
Step 4.3.2.4.3.3.3.1.3.1.3
Multiply by .
Step 4.3.2.4.3.3.3.1.3.2
Subtract from .
Step 4.3.2.4.3.4
Solve for .
Step 4.3.2.4.3.4.1
Rewrite so is on the left side of the inequality.
Step 4.3.2.4.3.4.2
Move all terms containing to the left side of the inequality.
Step 4.3.2.4.3.4.2.1
Subtract from both sides of the inequality.
Step 4.3.2.4.3.4.2.2
Combine the opposite terms in .
Step 4.3.2.4.3.4.2.2.1
Subtract from .
Step 4.3.2.4.3.4.2.2.2
Add and .
Step 4.3.2.4.3.4.3
Move all terms not containing to the right side of the inequality.
Step 4.3.2.4.3.4.3.1
Subtract from both sides of the inequality.
Step 4.3.2.4.3.4.3.2
Subtract from .
Step 4.3.2.4.3.4.4
Divide each term in by and simplify.
Step 4.3.2.4.3.4.4.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 4.3.2.4.3.4.4.2
Simplify the left side.
Step 4.3.2.4.3.4.4.2.1
Cancel the common factor of .
Step 4.3.2.4.3.4.4.2.1.1
Cancel the common factor.
Step 4.3.2.4.3.4.4.2.1.2
Divide by .
Step 4.3.2.4.3.4.4.3
Simplify the right side.
Step 4.3.2.4.3.4.4.3.1
Divide by .
Step 4.3.2.4.4
Use each root to create test intervals.
Step 4.3.2.4.5
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Step 4.3.2.4.5.1
Test a value on the interval to see if it makes the inequality true.
Step 4.3.2.4.5.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 4.3.2.4.5.1.2
Replace with in the original inequality.
Step 4.3.2.4.5.1.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 4.3.2.4.5.2
Test a value on the interval to see if it makes the inequality true.
Step 4.3.2.4.5.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 4.3.2.4.5.2.2
Replace with in the original inequality.
Step 4.3.2.4.5.2.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 4.3.2.4.5.3
Compare the intervals to determine which ones satisfy the original inequality.
True
True
True
True
Step 4.3.2.4.6
The solution consists of all of the true intervals.
or
Step 4.3.2.4.7
Combine the intervals.
All real numbers
All real numbers
Step 4.3.2.5
Set the argument in less than or equal to to find where the expression is defined.
Step 4.3.2.6
Solve for .
Step 4.3.2.6.1
Multiply both sides by .
Step 4.3.2.6.2
Simplify.
Step 4.3.2.6.2.1
Simplify the left side.
Step 4.3.2.6.2.1.1
Cancel the common factor of .
Step 4.3.2.6.2.1.1.1
Cancel the common factor.
Step 4.3.2.6.2.1.1.2
Rewrite the expression.
Step 4.3.2.6.2.2
Simplify the right side.
Step 4.3.2.6.2.2.1
Multiply by .
Step 4.3.2.6.3
Solve for .
Step 4.3.2.6.3.1
Add to both sides of the inequality.
Step 4.3.2.6.3.2
To remove the radical on the left side of the inequality, square both sides of the inequality.
Step 4.3.2.6.3.3
Simplify each side of the inequality.
Step 4.3.2.6.3.3.1
Use to rewrite as .
Step 4.3.2.6.3.3.2
Simplify the left side.
Step 4.3.2.6.3.3.2.1
Simplify .
Step 4.3.2.6.3.3.2.1.1
Multiply the exponents in .
Step 4.3.2.6.3.3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 4.3.2.6.3.3.2.1.1.2
Cancel the common factor of .
Step 4.3.2.6.3.3.2.1.1.2.1
Cancel the common factor.
Step 4.3.2.6.3.3.2.1.1.2.2
Rewrite the expression.
Step 4.3.2.6.3.3.2.1.2
Simplify.
Step 4.3.2.6.3.3.3
Simplify the right side.
Step 4.3.2.6.3.3.3.1
Simplify .
Step 4.3.2.6.3.3.3.1.1
Rewrite as .
Step 4.3.2.6.3.3.3.1.2
Expand using the FOIL Method.
Step 4.3.2.6.3.3.3.1.2.1
Apply the distributive property.
Step 4.3.2.6.3.3.3.1.2.2
Apply the distributive property.
Step 4.3.2.6.3.3.3.1.2.3
Apply the distributive property.
Step 4.3.2.6.3.3.3.1.3
Simplify and combine like terms.
Step 4.3.2.6.3.3.3.1.3.1
Simplify each term.
Step 4.3.2.6.3.3.3.1.3.1.1
Multiply by .
Step 4.3.2.6.3.3.3.1.3.1.2
Move to the left of .
Step 4.3.2.6.3.3.3.1.3.1.3
Multiply by .
Step 4.3.2.6.3.3.3.1.3.2
Add and .
Step 4.3.2.6.3.4
Solve for .
Step 4.3.2.6.3.4.1
Rewrite so is on the left side of the inequality.
Step 4.3.2.6.3.4.2
Move all terms containing to the left side of the inequality.
Step 4.3.2.6.3.4.2.1
Subtract from both sides of the inequality.
Step 4.3.2.6.3.4.2.2
Combine the opposite terms in .
Step 4.3.2.6.3.4.2.2.1
Subtract from .
Step 4.3.2.6.3.4.2.2.2
Add and .
Step 4.3.2.6.3.4.3
Move all terms not containing to the right side of the inequality.
Step 4.3.2.6.3.4.3.1
Subtract from both sides of the inequality.
Step 4.3.2.6.3.4.3.2
Subtract from .
Step 4.3.2.6.3.4.4
Divide each term in by and simplify.
Step 4.3.2.6.3.4.4.1
Divide each term in by .
Step 4.3.2.6.3.4.4.2
Simplify the left side.
Step 4.3.2.6.3.4.4.2.1
Cancel the common factor of .
Step 4.3.2.6.3.4.4.2.1.1
Cancel the common factor.
Step 4.3.2.6.3.4.4.2.1.2
Divide by .
Step 4.3.2.6.3.4.4.3
Simplify the right side.
Step 4.3.2.6.3.4.4.3.1
Divide by .
Step 4.3.2.7
The domain is all values of that make the expression defined.
Step 4.3.3
Find the union of .
Step 4.3.3.1
The union consists of all of the elements that are contained in each interval.
Step 4.4
Since the domain of is not equal to the range of , then is not an inverse of .
There is no inverse
There is no inverse
Step 5