Trigonometry Examples

Find the Inverse (2sin(y))/(sin(2y))+1/(cos(y))
2sin(y)sin(2y)+1cos(y)2sin(y)sin(2y)+1cos(y)
Step 1
Rewrite the equation as 2sin(y)sin(2y)+1cos(y)=x2sin(y)sin(2y)+1cos(y)=x.
2sin(y)sin(2y)+1cos(y)=x2sin(y)sin(2y)+1cos(y)=x
Step 2
Simplify the left side.
Tap for more steps...
Step 2.1
Simplify 2sin(y)sin(2y)+1cos(y)2sin(y)sin(2y)+1cos(y).
Tap for more steps...
Step 2.1.1
Simplify each term.
Tap for more steps...
Step 2.1.1.1
Apply the sine double-angle identity.
2sin(y)2sin(y)cos(y)+1cos(y)=x2sin(y)2sin(y)cos(y)+1cos(y)=x
Step 2.1.1.2
Cancel the common factor of 22.
Tap for more steps...
Step 2.1.1.2.1
Cancel the common factor.
2sin(y)2sin(y)cos(y)+1cos(y)=x
Step 2.1.1.2.2
Rewrite the expression.
sin(y)sin(y)cos(y)+1cos(y)=x
sin(y)sin(y)cos(y)+1cos(y)=x
Step 2.1.1.3
Cancel the common factor of sin(y).
Tap for more steps...
Step 2.1.1.3.1
Cancel the common factor.
sin(y)sin(y)cos(y)+1cos(y)=x
Step 2.1.1.3.2
Rewrite the expression.
1cos(y)+1cos(y)=x
1cos(y)+1cos(y)=x
Step 2.1.1.4
Convert from 1cos(y) to sec(y).
sec(y)+1cos(y)=x
Step 2.1.1.5
Convert from 1cos(y) to sec(y).
sec(y)+sec(y)=x
sec(y)+sec(y)=x
Step 2.1.2
Add sec(y) and sec(y).
2sec(y)=x
2sec(y)=x
2sec(y)=x
Step 3
Divide each term in 2sec(y)=x by 2 and simplify.
Tap for more steps...
Step 3.1
Divide each term in 2sec(y)=x by 2.
2sec(y)2=x2
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 3.2.1.1
Cancel the common factor.
2sec(y)2=x2
Step 3.2.1.2
Divide sec(y) by 1.
sec(y)=x2
sec(y)=x2
sec(y)=x2
sec(y)=x2
Step 4
Take the inverse secant of both sides of the equation to extract y from inside the secant.
y=arcsec(x2)
Step 5
Interchange the variables.
x=arcsec(y2)
Step 6
Solve for y.
Tap for more steps...
Step 6.1
Rewrite the equation as arcsec(y2)=x.
arcsec(y2)=x
Step 6.2
Take the inverse arcsecant of both sides of the equation to extract y from inside the arcsecant.
y2=sec(x)
Step 6.3
Multiply both sides of the equation by 2.
2y2=2sec(x)
Step 6.4
Simplify the left side.
Tap for more steps...
Step 6.4.1
Cancel the common factor of 2.
Tap for more steps...
Step 6.4.1.1
Cancel the common factor.
2y2=2sec(x)
Step 6.4.1.2
Rewrite the expression.
y=2sec(x)
y=2sec(x)
y=2sec(x)
y=2sec(x)
Step 7
Replace y with f-1(x) to show the final answer.
f-1(x)=2sec(x)
Step 8
Verify if f-1(x)=2sec(x) is the inverse of f(x)=arcsec(x2).
Tap for more steps...
Step 8.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 8.2
Evaluate f-1(f(x)).
Tap for more steps...
Step 8.2.1
Set up the composite result function.
f-1(f(x))
Step 8.2.2
Evaluate f-1(arcsec(x2)) by substituting in the value of f into f-1.
f-1(arcsec(x2))=2sec(arcsec(x2))
Step 8.2.3
The functions secant and arcsecant are inverses.
f-1(arcsec(x2))=2(x2)
Step 8.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 8.2.4.1
Cancel the common factor.
f-1(arcsec(x2))=2(x2)
Step 8.2.4.2
Rewrite the expression.
f-1(arcsec(x2))=x
f-1(arcsec(x2))=x
f-1(arcsec(x2))=x
Step 8.3
Evaluate f(f-1(x)).
Tap for more steps...
Step 8.3.1
Set up the composite result function.
f(f-1(x))
Step 8.3.2
Evaluate f(2sec(x)) by substituting in the value of f-1 into f.
f(2sec(x))=arcsec(2sec(x)2)
Step 8.3.3
Cancel the common factor of 2.
Tap for more steps...
Step 8.3.3.1
Cancel the common factor.
f(2sec(x))=arcsec(2sec(x)2)
Step 8.3.3.2
Divide sec(x) by 1.
f(2sec(x))=arcsec(sec(x))
f(2sec(x))=arcsec(sec(x))
f(2sec(x))=arcsec(sec(x))
Step 8.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=2sec(x) is the inverse of f(x)=arcsec(x2).
f-1(x)=2sec(x)
f-1(x)=2sec(x)
 [x2  12  π  xdx ]