Enter a problem...
Trigonometry Examples
1-cot(-x)1+cot(x)
Step 1
Interchange the variables.
x=1-cot(-y)1+cot(y)
Step 2
Step 2.1
Rewrite the equation as 1-cot(-y)1+cot(y)=x.
1-cot(-y)1+cot(y)=x
Step 2.2
Multiply both sides by 1+cot(y).
1-cot(-y)1+cot(y)(1+cot(y))=x(1+cot(y))
Step 2.3
Simplify.
Step 2.3.1
Simplify the left side.
Step 2.3.1.1
Simplify 1-cot(-y)1+cot(y)(1+cot(y)).
Step 2.3.1.1.1
Cancel the common factor of 1+cot(y).
Step 2.3.1.1.1.1
Cancel the common factor.
1-cot(-y)1+cot(y)(1+cot(y))=x(1+cot(y))
Step 2.3.1.1.1.2
Rewrite the expression.
1-cot(-y)=x(1+cot(y))
1-cot(-y)=x(1+cot(y))
Step 2.3.1.1.2
Simplify each term.
Step 2.3.1.1.2.1
Since cot(-y) is an odd function, rewrite cot(-y) as -cot(y).
1--cot(y)=x(1+cot(y))
Step 2.3.1.1.2.2
Multiply --cot(y).
Step 2.3.1.1.2.2.1
Multiply -1 by -1.
1+1cot(y)=x(1+cot(y))
Step 2.3.1.1.2.2.2
Multiply cot(y) by 1.
1+cot(y)=x(1+cot(y))
1+cot(y)=x(1+cot(y))
1+cot(y)=x(1+cot(y))
1+cot(y)=x(1+cot(y))
1+cot(y)=x(1+cot(y))
Step 2.3.2
Simplify the right side.
Step 2.3.2.1
Simplify x(1+cot(y)).
Step 2.3.2.1.1
Apply the distributive property.
1+cot(y)=x⋅1+xcot(y)
Step 2.3.2.1.2
Multiply x by 1.
1+cot(y)=x+xcot(y)
1+cot(y)=x+xcot(y)
1+cot(y)=x+xcot(y)
1+cot(y)=x+xcot(y)
Step 2.4
Solve for y.
Step 2.4.1
Substitute u for cot(y).
1+u=x+x(u)
Step 2.4.2
Subtract xu from both sides of the equation.
1+u-xu=x
Step 2.4.3
Subtract 1 from both sides of the equation.
u-xu=x-1
Step 2.4.4
Factor u out of u-xu.
Step 2.4.4.1
Factor u out of u1.
u⋅1-xu=x-1
Step 2.4.4.2
Factor u out of -xu.
u⋅1+u(-x)=x-1
Step 2.4.4.3
Factor u out of u⋅1+u(-x).
u(1-x)=x-1
u(1-x)=x-1
Step 2.4.5
Divide each term in u(1-x)=x-1 by 1-x and simplify.
Step 2.4.5.1
Divide each term in u(1-x)=x-1 by 1-x.
u(1-x)1-x=x1-x+-11-x
Step 2.4.5.2
Simplify the left side.
Step 2.4.5.2.1
Cancel the common factor of 1-x.
Step 2.4.5.2.1.1
Cancel the common factor.
u(1-x)1-x=x1-x+-11-x
Step 2.4.5.2.1.2
Divide u by 1.
u=x1-x+-11-x
u=x1-x+-11-x
u=x1-x+-11-x
Step 2.4.5.3
Simplify the right side.
Step 2.4.5.3.1
Combine the numerators over the common denominator.
u=x-11-x
Step 2.4.5.3.2
Cancel the common factor of x-1 and 1-x.
Step 2.4.5.3.2.1
Factor -1 out of x.
u=-1(-x)-11-x
Step 2.4.5.3.2.2
Rewrite -1 as -1(1).
u=-1(-x)-1(1)1-x
Step 2.4.5.3.2.3
Factor -1 out of -1(-x)-1(1).
u=-1(-x+1)1-x
Step 2.4.5.3.2.4
Reorder terms.
u=-1(-x+1)-x+1
Step 2.4.5.3.2.5
Cancel the common factor.
u=-1(-x+1)-x+1
Step 2.4.5.3.2.6
Divide -1 by 1.
u=-1
u=-1
u=-1
u=-1
Step 2.4.6
Substitute cot(y) for u.
cot(y)=-1
Step 2.4.7
Take the inverse cotangent of both sides of the equation to extract y from inside the cotangent.
y=arccot(-1)
Step 2.4.8
Simplify the right side.
Step 2.4.8.1
The exact value of arccot(-1) is 3π4.
y=3π4
y=3π4
Step 2.4.9
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from π to find the solution in the third quadrant.
y=3π4-π
Step 2.4.10
Simplify the expression to find the second solution.
Step 2.4.10.1
Add 2π to 3π4-π.
y=3π4-π+2π
Step 2.4.10.2
The resulting angle of 7π4 is positive and coterminal with 3π4-π.
y=7π4
y=7π4
Step 2.4.11
Find the period of cot(y).
Step 2.4.11.1
The period of the function can be calculated using π|b|.
π|b|
Step 2.4.11.2
Replace b with 1 in the formula for period.
π|1|
Step 2.4.11.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
π1
Step 2.4.11.4
Divide π by 1.
π
π
Step 2.4.12
The period of the cot(y) function is π so values will repeat every π radians in both directions.
y=3π4+πn,7π4+πn, for any integer n
y=3π4+πn,7π4+πn, for any integer n
Step 2.5
Consolidate the answers.
y=3π4+πn, for any integer n
y=3π4+πn, for any integer n
Step 3
Replace y with f-1(x) to show the final answer.
f-1(x)=3π4+πn
Step 4
Step 4.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 4.2
Evaluate f-1(f(x)).
Step 4.2.1
Set up the composite result function.
f-1(f(x))
Step 4.2.2
Evaluate f-1(1-cot(-x)1+cot(x)) by substituting in the value of f into f-1.
f-1(1-cot(-x)1+cot(x))=3π4+πn
Step 4.2.3
Reorder 3π4 and πn.
f-1(1-cot(-x)1+cot(x))=πn+3π4
f-1(1-cot(-x)1+cot(x))=πn+3π4
Step 4.3
Evaluate f(f-1(x)).
Step 4.3.1
Set up the composite result function.
f(f-1(x))
Step 4.3.2
Evaluate f(3π4+πn) by substituting in the value of f-1 into f.
f(3π4+πn)=1-cot(-(3π4+πn))1+cot(3π4+πn)
Step 4.3.3
Apply the distributive property.
f(3π4+πn)=1-cot(-3π4-πn)1+cot(3π4+πn)
f(3π4+πn)=1-cot(-3π4-πn)1+cot(3π4+πn)
Step 4.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=3π4+πn is the inverse of f(x)=1-cot(-x)1+cot(x).
f-1(x)=3π4+πn
f-1(x)=3π4+πn