Trigonometry Examples

Find the Inverse x^2+y^2-20x-16y+100=0
Step 1
Use the quadratic formula to find the solutions.
Step 2
Substitute the values , , and into the quadratic formula and solve for .
Step 3
Simplify.
Tap for more steps...
Step 3.1
Simplify the numerator.
Tap for more steps...
Step 3.1.1
Rewrite as .
Step 3.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.1.3
Simplify.
Tap for more steps...
Step 3.1.3.1
Multiply by .
Step 3.1.3.2
Apply the distributive property.
Step 3.1.3.3
Multiply by .
Step 3.1.3.4
Subtract from .
Step 3.1.3.5
Factor out of .
Tap for more steps...
Step 3.1.3.5.1
Factor out of .
Step 3.1.3.5.2
Factor out of .
Step 3.1.3.5.3
Factor out of .
Step 3.1.3.6
Combine exponents.
Tap for more steps...
Step 3.1.3.6.1
Multiply by .
Step 3.1.3.6.2
Multiply by .
Step 3.1.4
Simplify each term.
Tap for more steps...
Step 3.1.4.1
Apply the distributive property.
Step 3.1.4.2
Multiply by .
Step 3.1.5
Add and .
Step 3.1.6
Factor out of .
Tap for more steps...
Step 3.1.6.1
Factor out of .
Step 3.1.6.2
Factor out of .
Step 3.1.6.3
Factor out of .
Step 3.1.7
Multiply by .
Step 3.1.8
Rewrite as .
Tap for more steps...
Step 3.1.8.1
Rewrite as .
Step 3.1.8.2
Add parentheses.
Step 3.1.9
Pull terms out from under the radical.
Step 3.2
Multiply by .
Step 3.3
Simplify .
Step 4
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Rewrite as .
Step 4.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 4.1.3
Simplify.
Tap for more steps...
Step 4.1.3.1
Multiply by .
Step 4.1.3.2
Apply the distributive property.
Step 4.1.3.3
Multiply by .
Step 4.1.3.4
Subtract from .
Step 4.1.3.5
Factor out of .
Tap for more steps...
Step 4.1.3.5.1
Factor out of .
Step 4.1.3.5.2
Factor out of .
Step 4.1.3.5.3
Factor out of .
Step 4.1.3.6
Combine exponents.
Tap for more steps...
Step 4.1.3.6.1
Multiply by .
Step 4.1.3.6.2
Multiply by .
Step 4.1.4
Simplify each term.
Tap for more steps...
Step 4.1.4.1
Apply the distributive property.
Step 4.1.4.2
Multiply by .
Step 4.1.5
Add and .
Step 4.1.6
Factor out of .
Tap for more steps...
Step 4.1.6.1
Factor out of .
Step 4.1.6.2
Factor out of .
Step 4.1.6.3
Factor out of .
Step 4.1.7
Multiply by .
Step 4.1.8
Rewrite as .
Tap for more steps...
Step 4.1.8.1
Rewrite as .
Step 4.1.8.2
Add parentheses.
Step 4.1.9
Pull terms out from under the radical.
Step 4.2
Multiply by .
Step 4.3
Simplify .
Step 4.4
Change the to .
Step 5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 5.1
Simplify the numerator.
Tap for more steps...
Step 5.1.1
Rewrite as .
Step 5.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 5.1.3
Simplify.
Tap for more steps...
Step 5.1.3.1
Multiply by .
Step 5.1.3.2
Apply the distributive property.
Step 5.1.3.3
Multiply by .
Step 5.1.3.4
Subtract from .
Step 5.1.3.5
Factor out of .
Tap for more steps...
Step 5.1.3.5.1
Factor out of .
Step 5.1.3.5.2
Factor out of .
Step 5.1.3.5.3
Factor out of .
Step 5.1.3.6
Combine exponents.
Tap for more steps...
Step 5.1.3.6.1
Multiply by .
Step 5.1.3.6.2
Multiply by .
Step 5.1.4
Simplify each term.
Tap for more steps...
Step 5.1.4.1
Apply the distributive property.
Step 5.1.4.2
Multiply by .
Step 5.1.5
Add and .
Step 5.1.6
Factor out of .
Tap for more steps...
Step 5.1.6.1
Factor out of .
Step 5.1.6.2
Factor out of .
Step 5.1.6.3
Factor out of .
Step 5.1.7
Multiply by .
Step 5.1.8
Rewrite as .
Tap for more steps...
Step 5.1.8.1
Rewrite as .
Step 5.1.8.2
Add parentheses.
Step 5.1.9
Pull terms out from under the radical.
Step 5.2
Multiply by .
Step 5.3
Simplify .
Step 5.4
Change the to .
Step 6
The final answer is the combination of both solutions.
Step 7
Interchange the variables. Create an equation for each expression.
Step 8
Solve for .
Tap for more steps...
Step 8.1
Rewrite the equation as .
Step 8.2
Subtract from both sides of the equation.
Step 8.3
To remove the radical on the left side of the equation, square both sides of the equation.
Step 8.4
Simplify each side of the equation.
Tap for more steps...
Step 8.4.1
Use to rewrite as .
Step 8.4.2
Simplify the left side.
Tap for more steps...
Step 8.4.2.1
Simplify .
Tap for more steps...
Step 8.4.2.1.1
Multiply the exponents in .
Tap for more steps...
Step 8.4.2.1.1.1
Apply the power rule and multiply exponents, .
Step 8.4.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 8.4.2.1.1.2.1
Cancel the common factor.
Step 8.4.2.1.1.2.2
Rewrite the expression.
Step 8.4.2.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 8.4.2.1.2.1
Apply the distributive property.
Step 8.4.2.1.2.2
Apply the distributive property.
Step 8.4.2.1.2.3
Apply the distributive property.
Step 8.4.2.1.3
Simplify and combine like terms.
Tap for more steps...
Step 8.4.2.1.3.1
Simplify each term.
Tap for more steps...
Step 8.4.2.1.3.1.1
Rewrite using the commutative property of multiplication.
Step 8.4.2.1.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 8.4.2.1.3.1.2.1
Move .
Step 8.4.2.1.3.1.2.2
Multiply by .
Step 8.4.2.1.3.1.3
Move to the left of .
Step 8.4.2.1.3.1.4
Multiply by .
Step 8.4.2.1.3.1.5
Multiply by .
Step 8.4.2.1.3.2
Add and .
Step 8.4.2.1.4
Simplify.
Step 8.4.3
Simplify the right side.
Tap for more steps...
Step 8.4.3.1
Simplify .
Tap for more steps...
Step 8.4.3.1.1
Rewrite as .
Step 8.4.3.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 8.4.3.1.2.1
Apply the distributive property.
Step 8.4.3.1.2.2
Apply the distributive property.
Step 8.4.3.1.2.3
Apply the distributive property.
Step 8.4.3.1.3
Simplify and combine like terms.
Tap for more steps...
Step 8.4.3.1.3.1
Simplify each term.
Tap for more steps...
Step 8.4.3.1.3.1.1
Multiply by .
Step 8.4.3.1.3.1.2
Move to the left of .
Step 8.4.3.1.3.1.3
Multiply by .
Step 8.4.3.1.3.2
Subtract from .
Step 8.5
Solve for .
Tap for more steps...
Step 8.5.1
Move all terms to the left side of the equation and simplify.
Tap for more steps...
Step 8.5.1.1
Move all the expressions to the left side of the equation.
Tap for more steps...
Step 8.5.1.1.1
Subtract from both sides of the equation.
Step 8.5.1.1.2
Add to both sides of the equation.
Step 8.5.1.1.3
Subtract from both sides of the equation.
Step 8.5.1.2
Subtract from .
Step 8.5.2
Use the quadratic formula to find the solutions.
Step 8.5.3
Substitute the values , , and into the quadratic formula and solve for .
Step 8.5.4
Simplify.
Tap for more steps...
Step 8.5.4.1
Simplify the numerator.
Tap for more steps...
Step 8.5.4.1.1
Raise to the power of .
Step 8.5.4.1.2
Multiply by .
Step 8.5.4.1.3
Apply the distributive property.
Step 8.5.4.1.4
Simplify.
Tap for more steps...
Step 8.5.4.1.4.1
Multiply by .
Step 8.5.4.1.4.2
Multiply by .
Step 8.5.4.1.4.3
Multiply by .
Step 8.5.4.1.5
Subtract from .
Step 8.5.4.1.6
Add and .
Step 8.5.4.1.7
Factor out of .
Tap for more steps...
Step 8.5.4.1.7.1
Factor out of .
Step 8.5.4.1.7.2
Factor out of .
Step 8.5.4.1.7.3
Factor out of .
Step 8.5.4.1.8
Rewrite as .
Tap for more steps...
Step 8.5.4.1.8.1
Rewrite as .
Step 8.5.4.1.8.2
Rewrite as .
Step 8.5.4.1.8.3
Add parentheses.
Step 8.5.4.1.9
Pull terms out from under the radical.
Step 8.5.4.1.10
Raise to the power of .
Step 8.5.4.2
Multiply by .
Step 8.5.4.3
Simplify .
Step 8.5.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 8.5.5.1
Simplify the numerator.
Tap for more steps...
Step 8.5.5.1.1
Raise to the power of .
Step 8.5.5.1.2
Multiply by .
Step 8.5.5.1.3
Apply the distributive property.
Step 8.5.5.1.4
Simplify.
Tap for more steps...
Step 8.5.5.1.4.1
Multiply by .
Step 8.5.5.1.4.2
Multiply by .
Step 8.5.5.1.4.3
Multiply by .
Step 8.5.5.1.5
Subtract from .
Step 8.5.5.1.6
Add and .
Step 8.5.5.1.7
Factor out of .
Tap for more steps...
Step 8.5.5.1.7.1
Factor out of .
Step 8.5.5.1.7.2
Factor out of .
Step 8.5.5.1.7.3
Factor out of .
Step 8.5.5.1.8
Rewrite as .
Tap for more steps...
Step 8.5.5.1.8.1
Rewrite as .
Step 8.5.5.1.8.2
Rewrite as .
Step 8.5.5.1.8.3
Add parentheses.
Step 8.5.5.1.9
Pull terms out from under the radical.
Step 8.5.5.1.10
Raise to the power of .
Step 8.5.5.2
Multiply by .
Step 8.5.5.3
Simplify .
Step 8.5.5.4
Change the to .
Step 8.5.6
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 8.5.6.1
Simplify the numerator.
Tap for more steps...
Step 8.5.6.1.1
Raise to the power of .
Step 8.5.6.1.2
Multiply by .
Step 8.5.6.1.3
Apply the distributive property.
Step 8.5.6.1.4
Simplify.
Tap for more steps...
Step 8.5.6.1.4.1
Multiply by .
Step 8.5.6.1.4.2
Multiply by .
Step 8.5.6.1.4.3
Multiply by .
Step 8.5.6.1.5
Subtract from .
Step 8.5.6.1.6
Add and .
Step 8.5.6.1.7
Factor out of .
Tap for more steps...
Step 8.5.6.1.7.1
Factor out of .
Step 8.5.6.1.7.2
Factor out of .
Step 8.5.6.1.7.3
Factor out of .
Step 8.5.6.1.8
Rewrite as .
Tap for more steps...
Step 8.5.6.1.8.1
Rewrite as .
Step 8.5.6.1.8.2
Rewrite as .
Step 8.5.6.1.8.3
Add parentheses.
Step 8.5.6.1.9
Pull terms out from under the radical.
Step 8.5.6.1.10
Raise to the power of .
Step 8.5.6.2
Multiply by .
Step 8.5.6.3
Simplify .
Step 8.5.6.4
Change the to .
Step 8.5.7
The final answer is the combination of both solutions.
Step 9
Replace with to show the final answer.
Step 10
Verify if is the inverse of .
Tap for more steps...
Step 10.1
The domain of the inverse is the range of the original function and vice versa. Find the domain and the range of and and compare them.
Step 10.2
Find the range of .
Tap for more steps...
Step 10.2.1
The range is the set of all valid values. Use the graph to find the range.
Interval Notation:
Step 10.3
Find the domain of .
Tap for more steps...
Step 10.3.1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 10.3.2
Solve for .
Tap for more steps...
Step 10.3.2.1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 10.3.2.2
Set equal to .
Step 10.3.2.3
Set equal to and solve for .
Tap for more steps...
Step 10.3.2.3.1
Set equal to .
Step 10.3.2.3.2
Solve for .
Tap for more steps...
Step 10.3.2.3.2.1
Subtract from both sides of the equation.
Step 10.3.2.3.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 10.3.2.3.2.2.1
Divide each term in by .
Step 10.3.2.3.2.2.2
Simplify the left side.
Tap for more steps...
Step 10.3.2.3.2.2.2.1
Dividing two negative values results in a positive value.
Step 10.3.2.3.2.2.2.2
Divide by .
Step 10.3.2.3.2.2.3
Simplify the right side.
Tap for more steps...
Step 10.3.2.3.2.2.3.1
Divide by .
Step 10.3.2.4
The final solution is all the values that make true.
Step 10.3.2.5
Use each root to create test intervals.
Step 10.3.2.6
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Tap for more steps...
Step 10.3.2.6.1
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 10.3.2.6.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 10.3.2.6.1.2
Replace with in the original inequality.
Step 10.3.2.6.1.3
The left side is less than the right side , which means that the given statement is false.
False
False
Step 10.3.2.6.2
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 10.3.2.6.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 10.3.2.6.2.2
Replace with in the original inequality.
Step 10.3.2.6.2.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 10.3.2.6.3
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 10.3.2.6.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 10.3.2.6.3.2
Replace with in the original inequality.
Step 10.3.2.6.3.3
The left side is less than the right side , which means that the given statement is false.
False
False
Step 10.3.2.6.4
Compare the intervals to determine which ones satisfy the original inequality.
False
True
False
False
True
False
Step 10.3.2.7
The solution consists of all of the true intervals.
Step 10.3.3
The domain is all values of that make the expression defined.
Step 10.4
Since the domain of is not equal to the range of , then is not an inverse of .
There is no inverse
There is no inverse
Step 11