Enter a problem...
Trigonometry Examples
Step 1
Subtract from both sides of the equation.
Step 2
Step 2.1
Divide each term in by .
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of .
Step 2.2.1.1
Cancel the common factor.
Step 2.2.1.2
Divide by .
Step 2.3
Simplify the right side.
Step 2.3.1
Move the negative in front of the fraction.
Step 3
Interchange the variables.
Step 4
Step 4.1
Rewrite the equation as .
Step 4.2
Subtract from both sides of the equation.
Step 4.3
Multiply both sides of the equation by .
Step 4.4
Simplify both sides of the equation.
Step 4.4.1
Simplify the left side.
Step 4.4.1.1
Simplify .
Step 4.4.1.1.1
Cancel the common factor of .
Step 4.4.1.1.1.1
Move the leading negative in into the numerator.
Step 4.4.1.1.1.2
Move the leading negative in into the numerator.
Step 4.4.1.1.1.3
Factor out of .
Step 4.4.1.1.1.4
Cancel the common factor.
Step 4.4.1.1.1.5
Rewrite the expression.
Step 4.4.1.1.2
Cancel the common factor of .
Step 4.4.1.1.2.1
Factor out of .
Step 4.4.1.1.2.2
Cancel the common factor.
Step 4.4.1.1.2.3
Rewrite the expression.
Step 4.4.1.1.3
Multiply.
Step 4.4.1.1.3.1
Multiply by .
Step 4.4.1.1.3.2
Multiply by .
Step 4.4.2
Simplify the right side.
Step 4.4.2.1
Simplify .
Step 4.4.2.1.1
Simplify terms.
Step 4.4.2.1.1.1
Apply the distributive property.
Step 4.4.2.1.1.2
Combine and .
Step 4.4.2.1.1.3
Cancel the common factor of .
Step 4.4.2.1.1.3.1
Move the leading negative in into the numerator.
Step 4.4.2.1.1.3.2
Move the leading negative in into the numerator.
Step 4.4.2.1.1.3.3
Factor out of .
Step 4.4.2.1.1.3.4
Cancel the common factor.
Step 4.4.2.1.1.3.5
Rewrite the expression.
Step 4.4.2.1.1.4
Combine and .
Step 4.4.2.1.1.5
Multiply by .
Step 4.4.2.1.2
Move to the left of .
Step 5
Replace with to show the final answer.
Step 6
Step 6.1
To verify the inverse, check if and .
Step 6.2
Evaluate .
Step 6.2.1
Set up the composite result function.
Step 6.2.2
Evaluate by substituting in the value of into .
Step 6.2.3
Combine the numerators over the common denominator.
Step 6.2.4
Simplify each term.
Step 6.2.4.1
Apply the distributive property.
Step 6.2.4.2
Cancel the common factor of .
Step 6.2.4.2.1
Factor out of .
Step 6.2.4.2.2
Cancel the common factor.
Step 6.2.4.2.3
Rewrite the expression.
Step 6.2.4.3
Multiply by .
Step 6.2.4.4
Cancel the common factor of .
Step 6.2.4.4.1
Move the leading negative in into the numerator.
Step 6.2.4.4.2
Factor out of .
Step 6.2.4.4.3
Cancel the common factor.
Step 6.2.4.4.4
Rewrite the expression.
Step 6.2.4.5
Multiply by .
Step 6.2.5
Simplify terms.
Step 6.2.5.1
Combine the opposite terms in .
Step 6.2.5.1.1
Add and .
Step 6.2.5.1.2
Add and .
Step 6.2.5.2
Cancel the common factor of .
Step 6.2.5.2.1
Cancel the common factor.
Step 6.2.5.2.2
Divide by .
Step 6.3
Evaluate .
Step 6.3.1
Set up the composite result function.
Step 6.3.2
Evaluate by substituting in the value of into .
Step 6.3.3
Combine the numerators over the common denominator.
Step 6.3.4
Simplify each term.
Step 6.3.4.1
Apply the distributive property.
Step 6.3.4.2
Cancel the common factor of .
Step 6.3.4.2.1
Move the leading negative in into the numerator.
Step 6.3.4.2.2
Factor out of .
Step 6.3.4.2.3
Cancel the common factor.
Step 6.3.4.2.4
Rewrite the expression.
Step 6.3.4.3
Multiply by .
Step 6.3.4.4
Cancel the common factor of .
Step 6.3.4.4.1
Factor out of .
Step 6.3.4.4.2
Cancel the common factor.
Step 6.3.4.4.3
Rewrite the expression.
Step 6.3.4.5
Multiply by .
Step 6.3.5
Simplify terms.
Step 6.3.5.1
Combine the opposite terms in .
Step 6.3.5.1.1
Subtract from .
Step 6.3.5.1.2
Add and .
Step 6.3.5.2
Cancel the common factor of .
Step 6.3.5.2.1
Cancel the common factor.
Step 6.3.5.2.2
Divide by .
Step 6.4
Since and , then is the inverse of .