Enter a problem...
Trigonometry Examples
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Subtract from both sides of the equation.
Step 2
Step 2.1
Divide each term in by .
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of .
Step 2.2.1.1
Cancel the common factor.
Step 2.2.1.2
Divide by .
Step 2.3
Simplify the right side.
Step 2.3.1
Simplify each term.
Step 2.3.1.1
Cancel the common factor of and .
Step 2.3.1.1.1
Factor out of .
Step 2.3.1.1.2
Cancel the common factors.
Step 2.3.1.1.2.1
Factor out of .
Step 2.3.1.1.2.2
Cancel the common factor.
Step 2.3.1.1.2.3
Rewrite the expression.
Step 2.3.1.2
Cancel the common factor of and .
Step 2.3.1.2.1
Factor out of .
Step 2.3.1.2.2
Cancel the common factors.
Step 2.3.1.2.2.1
Factor out of .
Step 2.3.1.2.2.2
Cancel the common factor.
Step 2.3.1.2.2.3
Rewrite the expression.
Step 3
Interchange the variables.
Step 4
Step 4.1
Rewrite the equation as .
Step 4.2
Subtract from both sides of the equation.
Step 4.3
Multiply both sides of the equation by .
Step 4.4
Simplify both sides of the equation.
Step 4.4.1
Simplify the left side.
Step 4.4.1.1
Simplify .
Step 4.4.1.1.1
Cancel the common factor of .
Step 4.4.1.1.1.1
Cancel the common factor.
Step 4.4.1.1.1.2
Rewrite the expression.
Step 4.4.1.1.2
Cancel the common factor of .
Step 4.4.1.1.2.1
Factor out of .
Step 4.4.1.1.2.2
Cancel the common factor.
Step 4.4.1.1.2.3
Rewrite the expression.
Step 4.4.2
Simplify the right side.
Step 4.4.2.1
Simplify .
Step 4.4.2.1.1
Apply the distributive property.
Step 4.4.2.1.2
Combine and .
Step 4.4.2.1.3
Cancel the common factor of .
Step 4.4.2.1.3.1
Move the leading negative in into the numerator.
Step 4.4.2.1.3.2
Cancel the common factor.
Step 4.4.2.1.3.3
Rewrite the expression.
Step 4.4.2.1.4
Combine and .
Step 4.4.2.1.5
Move the negative in front of the fraction.
Step 5
Replace with to show the final answer.
Step 6
Step 6.1
To verify the inverse, check if and .
Step 6.2
Evaluate .
Step 6.2.1
Set up the composite result function.
Step 6.2.2
Evaluate by substituting in the value of into .
Step 6.2.3
Combine the numerators over the common denominator.
Step 6.2.4
Simplify each term.
Step 6.2.4.1
Apply the distributive property.
Step 6.2.4.2
Cancel the common factor of .
Step 6.2.4.2.1
Cancel the common factor.
Step 6.2.4.2.2
Rewrite the expression.
Step 6.2.4.3
Cancel the common factor of .
Step 6.2.4.3.1
Cancel the common factor.
Step 6.2.4.3.2
Rewrite the expression.
Step 6.2.5
Simplify terms.
Step 6.2.5.1
Combine the opposite terms in .
Step 6.2.5.1.1
Subtract from .
Step 6.2.5.1.2
Add and .
Step 6.2.5.2
Cancel the common factor of .
Step 6.2.5.2.1
Cancel the common factor.
Step 6.2.5.2.2
Divide by .
Step 6.3
Evaluate .
Step 6.3.1
Set up the composite result function.
Step 6.3.2
Evaluate by substituting in the value of into .
Step 6.3.3
Combine the numerators over the common denominator.
Step 6.3.4
Simplify each term.
Step 6.3.4.1
Apply the distributive property.
Step 6.3.4.2
Cancel the common factor of .
Step 6.3.4.2.1
Cancel the common factor.
Step 6.3.4.2.2
Rewrite the expression.
Step 6.3.4.3
Cancel the common factor of .
Step 6.3.4.3.1
Move the leading negative in into the numerator.
Step 6.3.4.3.2
Cancel the common factor.
Step 6.3.4.3.3
Rewrite the expression.
Step 6.3.5
Simplify terms.
Step 6.3.5.1
Combine the opposite terms in .
Step 6.3.5.1.1
Add and .
Step 6.3.5.1.2
Add and .
Step 6.3.5.2
Cancel the common factor of .
Step 6.3.5.2.1
Cancel the common factor.
Step 6.3.5.2.2
Divide by .
Step 6.4
Since and , then is the inverse of .