Trigonometry Examples

Find the Inverse cos(arccsc(u))
cos(arccsc(u))
Step 1
Interchange the variables.
u=cos(arccsc(y))
Step 2
Solve for y.
Tap for more steps...
Step 2.1
Rewrite the equation as cos(arccsc(y))=u.
cos(arccsc(y))=u
Step 2.2
Take the inverse cosine of both sides of the equation to extract arccsc(y) from inside the cosine.
arccsc(y)=arccos(u)
Step 2.3
Take the inverse arccosecant of both sides of the equation to extract y from inside the arccosecant.
y=csc(arccos(u))
Step 2.4
Simplify the right side.
Tap for more steps...
Step 2.4.1
Simplify csc(arccos(u)).
Tap for more steps...
Step 2.4.1.1
Draw a triangle in the plane with vertices (u,12-u2), (u,0), and the origin. Then arccos(u) is the angle between the positive x-axis and the ray beginning at the origin and passing through (u,12-u2). Therefore, csc(arccos(u)) is 11-u2.
y=11-u2
Step 2.4.1.2
Simplify the denominator.
Tap for more steps...
Step 2.4.1.2.1
Rewrite 1 as 12.
y=112-u2
Step 2.4.1.2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=1 and b=u.
y=1(1+u)(1-u)
y=1(1+u)(1-u)
Step 2.4.1.3
Multiply 1(1+u)(1-u) by (1+u)(1-u)(1+u)(1-u).
y=1(1+u)(1-u)(1+u)(1-u)(1+u)(1-u)
Step 2.4.1.4
Combine and simplify the denominator.
Tap for more steps...
Step 2.4.1.4.1
Multiply 1(1+u)(1-u) by (1+u)(1-u)(1+u)(1-u).
y=(1+u)(1-u)(1+u)(1-u)(1+u)(1-u)
Step 2.4.1.4.2
Raise (1+u)(1-u) to the power of 1.
y=(1+u)(1-u)(1+u)(1-u)1(1+u)(1-u)
Step 2.4.1.4.3
Raise (1+u)(1-u) to the power of 1.
y=(1+u)(1-u)(1+u)(1-u)1(1+u)(1-u)1
Step 2.4.1.4.4
Use the power rule aman=am+n to combine exponents.
y=(1+u)(1-u)(1+u)(1-u)1+1
Step 2.4.1.4.5
Add 1 and 1.
y=(1+u)(1-u)(1+u)(1-u)2
Step 2.4.1.4.6
Rewrite (1+u)(1-u)2 as (1+u)(1-u).
Tap for more steps...
Step 2.4.1.4.6.1
Use nax=axn to rewrite (1+u)(1-u) as ((1+u)(1-u))12.
y=(1+u)(1-u)(((1+u)(1-u))12)2
Step 2.4.1.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
y=(1+u)(1-u)((1+u)(1-u))122
Step 2.4.1.4.6.3
Combine 12 and 2.
y=(1+u)(1-u)((1+u)(1-u))22
Step 2.4.1.4.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.4.1.4.6.4.1
Cancel the common factor.
y=(1+u)(1-u)((1+u)(1-u))22
Step 2.4.1.4.6.4.2
Rewrite the expression.
y=(1+u)(1-u)((1+u)(1-u))1
y=(1+u)(1-u)((1+u)(1-u))1
Step 2.4.1.4.6.5
Simplify.
y=(1+u)(1-u)(1+u)(1-u)
y=(1+u)(1-u)(1+u)(1-u)
y=(1+u)(1-u)(1+u)(1-u)
y=(1+u)(1-u)(1+u)(1-u)
y=(1+u)(1-u)(1+u)(1-u)
y=(1+u)(1-u)(1+u)(1-u)
Step 3
Replace y with f-1(u) to show the final answer.
f-1(u)=(1+u)(1-u)(1+u)(1-u)
Step 4
Verify if f-1(u)=(1+u)(1-u)(1+u)(1-u) is the inverse of f(u)=cos(arccsc(u)).
Tap for more steps...
Step 4.1
To verify the inverse, check if f-1(f(u))=u and f(f-1(u))=u.
Step 4.2
Evaluate f-1(f(u)).
Tap for more steps...
Step 4.2.1
Set up the composite result function.
f-1(f(u))
Step 4.2.2
Evaluate f-1(cos(arccsc(u))) by substituting in the value of f into f-1.
f-1(cos(arccsc(u)))=(1+cos(arccsc(u)))(1-(cos(arccsc(u))))(1+cos(arccsc(u)))(1-(cos(arccsc(u))))
Step 4.2.3
Remove parentheses.
f-1(cos(arccsc(u)))=(1+cos(arccsc(u)))(1-(cos(arccsc(u))))(1+cos(arccsc(u)))(1-(cos(arccsc(u))))
Step 4.2.4
Simplify the numerator.
Tap for more steps...
Step 4.2.4.1
Draw a triangle in the plane with vertices (u2-12,1), (u2-12,0), and the origin. Then arccsc(u) is the angle between the positive x-axis and the ray beginning at the origin and passing through (u2-12,1). Therefore, cos(arccsc(u)) is u2-1u.
f-1(cos(arccsc(u)))=(1+u2-1u)(1-cos(arccsc(u)))(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.2
Simplify the numerator.
Tap for more steps...
Step 4.2.4.2.1
Rewrite 1 as 12.
f-1(cos(arccsc(u)))=(1+u2-12u)(1-cos(arccsc(u)))(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=u and b=1.
f-1(cos(arccsc(u)))=(1+(u+1)(u-1)u)(1-cos(arccsc(u)))(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=(1+(u+1)(u-1)u)(1-cos(arccsc(u)))(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.3
Write 1 as a fraction with a common denominator.
f-1(cos(arccsc(u)))=(uu+(u+1)(u-1)u)(1-cos(arccsc(u)))(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.4
Combine the numerators over the common denominator.
f-1(cos(arccsc(u)))=u+(u+1)(u-1)u(1-cos(arccsc(u)))(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.5
Draw a triangle in the plane with vertices (u2-12,1), (u2-12,0), and the origin. Then arccsc(u) is the angle between the positive x-axis and the ray beginning at the origin and passing through (u2-12,1). Therefore, cos(arccsc(u)) is u2-1u.
f-1(cos(arccsc(u)))=u+(u+1)(u-1)u(1-u2-1u)(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.6
Simplify the numerator.
Tap for more steps...
Step 4.2.4.6.1
Rewrite 1 as 12.
f-1(cos(arccsc(u)))=u+(u+1)(u-1)u(1-u2-12u)(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.6.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=u and b=1.
f-1(cos(arccsc(u)))=u+(u+1)(u-1)u(1-(u+1)(u-1)u)(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=u+(u+1)(u-1)u(1-(u+1)(u-1)u)(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.7
Write 1 as a fraction with a common denominator.
f-1(cos(arccsc(u)))=u+(u+1)(u-1)u(uu-(u+1)(u-1)u)(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.8
Combine the numerators over the common denominator.
f-1(cos(arccsc(u)))=u+(u+1)(u-1)uu-(u+1)(u-1)u(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.9
Multiply u+(u+1)(u-1)u by u-(u+1)(u-1)u.
f-1(cos(arccsc(u)))=(u+(u+1)(u-1))(u-(u+1)(u-1))uu(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.10
Multiply u by u.
f-1(cos(arccsc(u)))=(u+(u+1)(u-1))(u-(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.11
Expand (u+(u+1)(u-1))(u-(u+1)(u-1)) using the FOIL Method.
Tap for more steps...
Step 4.2.4.11.1
Apply the distributive property.
f-1(cos(arccsc(u)))=u(u-(u+1)(u-1))+(u+1)(u-1)(u-(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.11.2
Apply the distributive property.
f-1(cos(arccsc(u)))=uu+u(-(u+1)(u-1))+(u+1)(u-1)(u-(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.11.3
Apply the distributive property.
f-1(cos(arccsc(u)))=uu+u(-(u+1)(u-1))+(u+1)(u-1)u+(u+1)(u-1)(-(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=uu+u(-(u+1)(u-1))+(u+1)(u-1)u+(u+1)(u-1)(-(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.12
Combine the opposite terms in uu+u(-(u+1)(u-1))+(u+1)(u-1)u+(u+1)(u-1)(-(u+1)(u-1)).
Tap for more steps...
Step 4.2.4.12.1
Reorder the factors in the terms u(-(u+1)(u-1)) and (u+1)(u-1)u.
f-1(cos(arccsc(u)))=uu-u(u+1)(u-1)+u(u+1)(u-1)+(u+1)(u-1)(-(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.12.2
Add -u(u+1)(u-1) and u(u+1)(u-1).
f-1(cos(arccsc(u)))=uu+0+(u+1)(u-1)(-(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.12.3
Add uu and 0.
f-1(cos(arccsc(u)))=uu+(u+1)(u-1)(-(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=uu+(u+1)(u-1)(-(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13
Simplify each term.
Tap for more steps...
Step 4.2.4.13.1
Multiply u by u.
f-1(cos(arccsc(u)))=u2+(u+1)(u-1)(-(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.2
Rewrite using the commutative property of multiplication.
f-1(cos(arccsc(u)))=u2-(u+1)(u-1)(u+1)(u-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.3
Multiply -(u+1)(u-1)(u+1)(u-1).
Tap for more steps...
Step 4.2.4.13.3.1
Raise (u+1)(u-1) to the power of 1.
f-1(cos(arccsc(u)))=u2-((u+1)(u-1)(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.3.2
Raise (u+1)(u-1) to the power of 1.
f-1(cos(arccsc(u)))=u2-((u+1)(u-1)(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.3.3
Use the power rule aman=am+n to combine exponents.
f-1(cos(arccsc(u)))=u2-(u+1)(u-1)1+1u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.3.4
Add 1 and 1.
f-1(cos(arccsc(u)))=u2-(u+1)(u-1)2u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=u2-(u+1)(u-1)2u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.4
Rewrite (u+1)(u-1)2 as (u+1)(u-1).
Tap for more steps...
Step 4.2.4.13.4.1
Use nax=axn to rewrite (u+1)(u-1) as ((u+1)(u-1))12.
f-1(cos(arccsc(u)))=u2-(((u+1)(u-1))12)2u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.4.2
Apply the power rule and multiply exponents, (am)n=amn.
f-1(cos(arccsc(u)))=u2-((u+1)(u-1))122u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.4.3
Combine 12 and 2.
f-1(cos(arccsc(u)))=u2-((u+1)(u-1))22u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.4.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.2.4.13.4.4.1
Cancel the common factor.
f-1(cos(arccsc(u)))=u2-((u+1)(u-1))22u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.4.4.2
Rewrite the expression.
f-1(cos(arccsc(u)))=u2-((u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=u2-((u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.4.5
Simplify.
f-1(cos(arccsc(u)))=u2-((u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=u2-((u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.5
Expand (u+1)(u-1) using the FOIL Method.
Tap for more steps...
Step 4.2.4.13.5.1
Apply the distributive property.
f-1(cos(arccsc(u)))=u2-(u(u-1)+1(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.5.2
Apply the distributive property.
f-1(cos(arccsc(u)))=u2-(uu+u-1+1(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.5.3
Apply the distributive property.
f-1(cos(arccsc(u)))=u2-(uu+u-1+1u+1-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=u2-(uu+u-1+1u+1-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.6
Simplify and combine like terms.
Tap for more steps...
Step 4.2.4.13.6.1
Simplify each term.
Tap for more steps...
Step 4.2.4.13.6.1.1
Multiply u by u.
f-1(cos(arccsc(u)))=u2-(u2+u-1+1u+1-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.6.1.2
Move -1 to the left of u.
f-1(cos(arccsc(u)))=u2-(u2-1u+1u+1-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.6.1.3
Rewrite -1u as -u.
f-1(cos(arccsc(u)))=u2-(u2-u+1u+1-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.6.1.4
Multiply u by 1.
f-1(cos(arccsc(u)))=u2-(u2-u+u+1-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.6.1.5
Multiply -1 by 1.
f-1(cos(arccsc(u)))=u2-(u2-u+u-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=u2-(u2-u+u-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.6.2
Add -u and u.
f-1(cos(arccsc(u)))=u2-(u2+0-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.6.3
Add u2 and 0.
f-1(cos(arccsc(u)))=u2-(u2-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=u2-(u2-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.7
Apply the distributive property.
f-1(cos(arccsc(u)))=u2-u2+1u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.8
Multiply -1 by -1.
f-1(cos(arccsc(u)))=u2-u2+1u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=u2-u2+1u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.14
Subtract u2 from u2.
f-1(cos(arccsc(u)))=0+1u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.15
Add 0 and 1.
f-1(cos(arccsc(u)))=1u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.16
Rewrite 1 as 12.
f-1(cos(arccsc(u)))=12u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.17
Rewrite 12u2 as (1u)2.
f-1(cos(arccsc(u)))=(1u)2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.18
Pull terms out from under the radical, assuming positive real numbers.
f-1(cos(arccsc(u)))=1u(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=1u(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.5
Simplify the denominator.
Tap for more steps...
Step 4.2.5.1
Draw a triangle in the plane with vertices (u2-12,1), (u2-12,0), and the origin. Then arccsc(u) is the angle between the positive x-axis and the ray beginning at the origin and passing through (u2-12,1). Therefore, cos(arccsc(u)) is u2-1u.
f-1(cos(arccsc(u)))=1u(1+u2-1u)(1-cos(arccsc(u)))
Step 4.2.5.2
Simplify the numerator.
Tap for more steps...
Step 4.2.5.2.1
Rewrite 1 as 12.
f-1(cos(arccsc(u)))=1u(1+u2-12u)(1-cos(arccsc(u)))
Step 4.2.5.2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=u and b=1.
f-1(cos(arccsc(u)))=1u(1+(u+1)(u-1)u)(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=1u(1+(u+1)(u-1)u)(1-cos(arccsc(u)))
Step 4.2.5.3
Write 1 as a fraction with a common denominator.
f-1(cos(arccsc(u)))=1u(uu+(u+1)(u-1)u)(1-cos(arccsc(u)))
Step 4.2.5.4
Combine the numerators over the common denominator.
f-1(cos(arccsc(u)))=1uu+(u+1)(u-1)u(1-cos(arccsc(u)))
Step 4.2.5.5
Draw a triangle in the plane with vertices (u2-12,1), (u2-12,0), and the origin. Then arccsc(u) is the angle between the positive x-axis and the ray beginning at the origin and passing through (u2-12,1). Therefore, cos(arccsc(u)) is u2-1u.
f-1(cos(arccsc(u)))=1uu+(u+1)(u-1)u(1-u2-1u)
Step 4.2.5.6
Simplify the numerator.
Tap for more steps...
Step 4.2.5.6.1
Rewrite 1 as 12.
f-1(cos(arccsc(u)))=1uu+(u+1)(u-1)u(1-u2-12u)
Step 4.2.5.6.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=u and b=1.
f-1(cos(arccsc(u)))=1uu+(u+1)(u-1)u(1-(u+1)(u-1)u)
f-1(cos(arccsc(u)))=1uu+(u+1)(u-1)u(1-(u+1)(u-1)u)
Step 4.2.5.7
Write 1 as a fraction with a common denominator.
f-1(cos(arccsc(u)))=1uu+(u+1)(u-1)u(uu-(u+1)(u-1)u)
Step 4.2.5.8
Combine the numerators over the common denominator.
f-1(cos(arccsc(u)))=1uu+(u+1)(u-1)uu-(u+1)(u-1)u
f-1(cos(arccsc(u)))=1uu+(u+1)(u-1)uu-(u+1)(u-1)u
Step 4.2.6
Multiply u+(u+1)(u-1)u by u-(u+1)(u-1)u.
f-1(cos(arccsc(u)))=1u(u+(u+1)(u-1))(u-(u+1)(u-1))uu
Step 4.2.7
Simplify the denominator.
Tap for more steps...
Step 4.2.7.1
Use the power rule aman=am+n to combine exponents.
f-1(cos(arccsc(u)))=1u(u+(u+1)(u-1))(u-(u+1)(u-1))u1+1
Step 4.2.7.2
Add 1 and 1.
f-1(cos(arccsc(u)))=1u(u+(u+1)(u-1))(u-(u+1)(u-1))u2
f-1(cos(arccsc(u)))=1u(u+(u+1)(u-1))(u-(u+1)(u-1))u2
Step 4.2.8
Simplify the denominator.
Tap for more steps...
Step 4.2.8.1
Expand (u+(u+1)(u-1))(u-(u+1)(u-1)) using the FOIL Method.
Tap for more steps...
Step 4.2.8.1.1
Apply the distributive property.
f-1(cos(arccsc(u)))=1uu(u-(u+1)(u-1))+(u+1)(u-1)(u-(u+1)(u-1))u2
Step 4.2.8.1.2
Apply the distributive property.
f-1(cos(arccsc(u)))=1uuu+u(-(u+1)(u-1))+(u+1)(u-1)(u-(u+1)(u-1))u2
Step 4.2.8.1.3
Apply the distributive property.
f-1(cos(arccsc(u)))=1uuu+u(-(u+1)(u-1))+(u+1)(u-1)u+(u+1)(u-1)(-(u+1)(u-1))u2
f-1(cos(arccsc(u)))=1uuu+u(-(u+1)(u-1))+(u+1)(u-1)u+(u+1)(u-1)(-(u+1)(u-1))u2
Step 4.2.8.2
Combine the opposite terms in uu+u(-(u+1)(u-1))+(u+1)(u-1)u+(u+1)(u-1)(-(u+1)(u-1)).
Tap for more steps...
Step 4.2.8.2.1
Reorder the factors in the terms u(-(u+1)(u-1)) and (u+1)(u-1)u.
f-1(cos(arccsc(u)))=1uuu-u(u+1)(u-1)+u(u+1)(u-1)+(u+1)(u-1)(-(u+1)(u-1))u2
Step 4.2.8.2.2
Add -u(u+1)(u-1) and u(u+1)(u-1).
f-1(cos(arccsc(u)))=1uuu+0+(u+1)(u-1)(-(u+1)(u-1))u2
Step 4.2.8.2.3
Add uu and 0.
f-1(cos(arccsc(u)))=1uuu+(u+1)(u-1)(-(u+1)(u-1))u2
f-1(cos(arccsc(u)))=1uuu+(u+1)(u-1)(-(u+1)(u-1))u2
Step 4.2.8.3
Simplify each term.
Tap for more steps...
Step 4.2.8.3.1
Multiply u by u.
f-1(cos(arccsc(u)))=1uu2+(u+1)(u-1)(-(u+1)(u-1))u2
Step 4.2.8.3.2
Rewrite using the commutative property of multiplication.
f-1(cos(arccsc(u)))=1uu2-(u+1)(u-1)(u+1)(u-1)u2
Step 4.2.8.3.3
Multiply -(u+1)(u-1)(u+1)(u-1).
Tap for more steps...
Step 4.2.8.3.3.1
Raise (u+1)(u-1) to the power of 1.
f-1(cos(arccsc(u)))=1uu2-((u+1)(u-1)(u+1)(u-1))u2
Step 4.2.8.3.3.2
Raise (u+1)(u-1) to the power of 1.
f-1(cos(arccsc(u)))=1uu2-((u+1)(u-1)(u+1)(u-1))u2
Step 4.2.8.3.3.3
Use the power rule aman=am+n to combine exponents.
f-1(cos(arccsc(u)))=1uu2-(u+1)(u-1)1+1u2
Step 4.2.8.3.3.4
Add 1 and 1.
f-1(cos(arccsc(u)))=1uu2-(u+1)(u-1)2u2
f-1(cos(arccsc(u)))=1uu2-(u+1)(u-1)2u2
Step 4.2.8.3.4
Rewrite (u+1)(u-1)2 as (u+1)(u-1).
Tap for more steps...
Step 4.2.8.3.4.1
Use nax=axn to rewrite (u+1)(u-1) as ((u+1)(u-1))12.
f-1(cos(arccsc(u)))=1uu2-(((u+1)(u-1))12)2u2
Step 4.2.8.3.4.2
Apply the power rule and multiply exponents, (am)n=amn.
f-1(cos(arccsc(u)))=1uu2-((u+1)(u-1))122u2
Step 4.2.8.3.4.3
Combine 12 and 2.
f-1(cos(arccsc(u)))=1uu2-((u+1)(u-1))22u2
Step 4.2.8.3.4.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.2.8.3.4.4.1
Cancel the common factor.
f-1(cos(arccsc(u)))=1uu2-((u+1)(u-1))22u2
Step 4.2.8.3.4.4.2
Rewrite the expression.
f-1(cos(arccsc(u)))=1uu2-((u+1)(u-1))u2
f-1(cos(arccsc(u)))=1uu2-((u+1)(u-1))u2
Step 4.2.8.3.4.5
Simplify.
f-1(cos(arccsc(u)))=1uu2-((u+1)(u-1))u2
f-1(cos(arccsc(u)))=1uu2-((u+1)(u-1))u2
Step 4.2.8.3.5
Expand (u+1)(u-1) using the FOIL Method.
Tap for more steps...
Step 4.2.8.3.5.1
Apply the distributive property.
f-1(cos(arccsc(u)))=1uu2-(u(u-1)+1(u-1))u2
Step 4.2.8.3.5.2
Apply the distributive property.
f-1(cos(arccsc(u)))=1uu2-(uu+u-1+1(u-1))u2
Step 4.2.8.3.5.3
Apply the distributive property.
f-1(cos(arccsc(u)))=1uu2-(uu+u-1+1u+1-1)u2
f-1(cos(arccsc(u)))=1uu2-(uu+u-1+1u+1-1)u2
Step 4.2.8.3.6
Simplify and combine like terms.
Tap for more steps...
Step 4.2.8.3.6.1
Simplify each term.
Tap for more steps...
Step 4.2.8.3.6.1.1
Multiply u by u.
f-1(cos(arccsc(u)))=1uu2-(u2+u-1+1u+1-1)u2
Step 4.2.8.3.6.1.2
Move -1 to the left of u.
f-1(cos(arccsc(u)))=1uu2-(u2-1u+1u+1-1)u2
Step 4.2.8.3.6.1.3
Rewrite -1u as -u.
f-1(cos(arccsc(u)))=1uu2-(u2-u+1u+1-1)u2
Step 4.2.8.3.6.1.4
Multiply u by 1.
f-1(cos(arccsc(u)))=1uu2-(u2-u+u+1-1)u2
Step 4.2.8.3.6.1.5
Multiply -1 by 1.
f-1(cos(arccsc(u)))=1uu2-(u2-u+u-1)u2
f-1(cos(arccsc(u)))=1uu2-(u2-u+u-1)u2
Step 4.2.8.3.6.2
Add -u and u.
f-1(cos(arccsc(u)))=1uu2-(u2+0-1)u2
Step 4.2.8.3.6.3
Add u2 and 0.
f-1(cos(arccsc(u)))=1uu2-(u2-1)u2
f-1(cos(arccsc(u)))=1uu2-(u2-1)u2
Step 4.2.8.3.7
Apply the distributive property.
f-1(cos(arccsc(u)))=1uu2-u2+1u2
Step 4.2.8.3.8
Multiply -1 by -1.
f-1(cos(arccsc(u)))=1uu2-u2+1u2
f-1(cos(arccsc(u)))=1uu2-u2+1u2
Step 4.2.8.4
Subtract u2 from u2.
f-1(cos(arccsc(u)))=1u0+1u2
Step 4.2.8.5
Add 0 and 1.
f-1(cos(arccsc(u)))=1u1u2
f-1(cos(arccsc(u)))=1u1u2
Step 4.2.9
Multiply the numerator by the reciprocal of the denominator.
f-1(cos(arccsc(u)))=1uu2
Step 4.2.10
Cancel the common factor of u.
Tap for more steps...
Step 4.2.10.1
Factor u out of u2.
f-1(cos(arccsc(u)))=1u(uu)
Step 4.2.10.2
Cancel the common factor.
f-1(cos(arccsc(u)))=1u(uu)
Step 4.2.10.3
Rewrite the expression.
f-1(cos(arccsc(u)))=u
f-1(cos(arccsc(u)))=u
f-1(cos(arccsc(u)))=u
Step 4.3
Evaluate f(f-1(u)).
Tap for more steps...
Step 4.3.1
Set up the composite result function.
f(f-1(u))
Step 4.3.2
Evaluate f((1+u)(1-u)(1+u)(1-u)) by substituting in the value of f-1 into f.
f((1+u)(1-u)(1+u)(1-u))=cos(arccsc((1+u)(1-u)(1+u)(1-u)))
Step 4.3.3
Draw a triangle in the plane with vertices (((1+u)(1-u)(1+u)(1-u))2-12,1), (((1+u)(1-u)(1+u)(1-u))2-12,0), and the origin. Then arccsc((1+u)(1-u)(1+u)(1-u)) is the angle between the positive x-axis and the ray beginning at the origin and passing through (((1+u)(1-u)(1+u)(1-u))2-12,1). Therefore, cos(arccsc((1+u)(1-u)(1+u)(1-u))) is ((1+u)(1-u)(1+u)(1-u))2-1(1+u)(1-u)(1+u)(1-u).
f((1+u)(1-u)(1+u)(1-u))=((1+u)(1-u)(1+u)(1-u))2-1(1+u)(1-u)(1+u)(1-u)
Step 4.3.4
Multiply the numerator by the reciprocal of the denominator.
f((1+u)(1-u)(1+u)(1-u))=((1+u)(1-u)(1+u)(1-u))2-1((1+u)(1-u)(1+u)(1-u))
Step 4.3.5
Rewrite 1 as 12.
f((1+u)(1-u)(1+u)(1-u))=((1+u)(1-u)(1+u)(1-u))2-12((1+u)(1-u)(1+u)(1-u))
Step 4.3.6
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=(1+u)(1-u)(1+u)(1-u) and b=1.
f((1+u)(1-u)(1+u)(1-u))=((1+u)(1-u)(1+u)(1-u)+1)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7
Simplify.
Tap for more steps...
Step 4.3.7.1
Write 1 as a fraction with a common denominator.
f((1+u)(1-u)(1+u)(1-u))=((1+u)(1-u)(1+u)(1-u)+(1+u)(1-u)(1+u)(1-u))((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.2
Combine the numerators over the common denominator.
f((1+u)(1-u)(1+u)(1-u))=(1+u)(1-u)+(1+u)(1-u)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3
Rewrite (1+u)(1-u)+(1+u)(1-u)(1+u)(1-u) in a factored form.
Tap for more steps...
Step 4.3.7.3.1
Use nax=axn to rewrite (1+u)(1-u) as ((1+u)(1-u))12.
f((1+u)(1-u)(1+u)(1-u))=((1+u)(1-u))12+(1+u)(1-u)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.2
Rewrite (1+u)(1-u) as (((1+u)(1-u))12)2.
f((1+u)(1-u)(1+u)(1-u))=((1+u)(1-u))12+(((1+u)(1-u))12)2(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.3
Let u=((1+u)(1-u))12. Substitute u for all occurrences of ((1+u)(1-u))12.
f((1+u)(1-u)(1+u)(1-u))=u+u2(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.4
Factor u out of u+u2.
Tap for more steps...
Step 4.3.7.3.4.1
Raise u to the power of 1.
f((1+u)(1-u)(1+u)(1-u))=u+u2(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.4.2
Factor u out of u1.
f((1+u)(1-u)(1+u)(1-u))=u1+u2(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.4.3
Factor u out of u2.
f((1+u)(1-u)(1+u)(1-u))=u1+uu(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.4.4
Factor u out of u1+uu.
f((1+u)(1-u)(1+u)(1-u))=u(1+u)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
f((1+u)(1-u)(1+u)(1-u))=u(1+u)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.5
Replace all occurrences of u with ((1+u)(1-u))12.
f((1+u)(1-u)(1+u)(1-u))=((1+u)(1-u))12(1+((1+u)(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6
Simplify.
Tap for more steps...
Step 4.3.7.3.6.1
Expand (1+u)(1-u) using the FOIL Method.
Tap for more steps...
Step 4.3.7.3.6.1.1
Apply the distributive property.
f((1+u)(1-u)(1+u)(1-u))=(1(1-u)+u(1-u))12(1+((1+u)(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.1.2
Apply the distributive property.
f((1+u)(1-u)(1+u)(1-u))=(11+1(-u)+u(1-u))12(1+((1+u)(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.1.3
Apply the distributive property.
f((1+u)(1-u)(1+u)(1-u))=(11+1(-u)+u1+u(-u))12(1+((1+u)(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
f((1+u)(1-u)(1+u)(1-u))=(11+1(-u)+u1+u(-u))12(1+((1+u)(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.2
Simplify and combine like terms.
Tap for more steps...
Step 4.3.7.3.6.2.1
Simplify each term.
Tap for more steps...
Step 4.3.7.3.6.2.1.1
Multiply 1 by 1.
f((1+u)(1-u)(1+u)(1-u))=(1+1(-u)+u1+u(-u))12(1+((1+u)(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.2.1.2
Multiply -u by 1.
f((1+u)(1-u)(1+u)(1-u))=(1-u+u1+u(-u))12(1+((1+u)(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.2.1.3
Multiply u by 1.
f((1+u)(1-u)(1+u)(1-u))=(1-u+u+u(-u))12(1+((1+u)(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.2.1.4
Rewrite using the commutative property of multiplication.
f((1+u)(1-u)(1+u)(1-u))=(1-u+u-uu)12(1+((1+u)(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.2.1.5
Multiply u by u by adding the exponents.
Tap for more steps...
Step 4.3.7.3.6.2.1.5.1
Move u.
f((1+u)(1-u)(1+u)(1-u))=(1-u+u-(uu))12(1+((1+u)(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.2.1.5.2
Multiply u by u.
f((1+u)(1-u)(1+u)(1-u))=(1-u+u-u2)12(1+((1+u)(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
f((1+u)(1-u)(1+u)(1-u))=(1-u+u-u2)12(1+((1+u)(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
f((1+u)(1-u)(1+u)(1-u))=(1-u+u-u2)12(1+((1+u)(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.2.2
Add -u and u.
f((1+u)(1-u)(1+u)(1-u))=(1+0-u2)12(1+((1+u)(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.2.3
Add 1 and 0.
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+((1+u)(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+((1+u)(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.3
Simplify each term.
Tap for more steps...
Step 4.3.7.3.6.3.1
Expand (1+u)(1-u) using the FOIL Method.
Tap for more steps...
Step 4.3.7.3.6.3.1.1
Apply the distributive property.
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(1(1-u)+u(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.3.1.2
Apply the distributive property.
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(11+1(-u)+u(1-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.3.1.3
Apply the distributive property.
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(11+1(-u)+u1+u(-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(11+1(-u)+u1+u(-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.3.2
Simplify and combine like terms.
Tap for more steps...
Step 4.3.7.3.6.3.2.1
Simplify each term.
Tap for more steps...
Step 4.3.7.3.6.3.2.1.1
Multiply 1 by 1.
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(1+1(-u)+u1+u(-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.3.2.1.2
Multiply -u by 1.
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(1-u+u1+u(-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.3.2.1.3
Multiply u by 1.
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(1-u+u+u(-u))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.3.2.1.4
Rewrite using the commutative property of multiplication.
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(1-u+u-uu)12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.3.2.1.5
Multiply u by u by adding the exponents.
Tap for more steps...
Step 4.3.7.3.6.3.2.1.5.1
Move u.
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(1-u+u-(uu))12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.3.2.1.5.2
Multiply u by u.
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(1-u+u-u2)12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(1-u+u-u2)12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(1-u+u-u2)12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.3.2.2
Add -u and u.
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(1+0-u2)12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.3.6.3.2.3
Add 1 and 0.
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(1-u2)12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(1-u2)12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(1-u2)12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(1-u2)12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
f((1+u)(1-u)(1+u)(1-u))=(1-u2)12(1+(1-u2)12)(1+u)(1-u)((1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)(1+u)(1-u))
Step 4.3.7.4
To write as a fraction with a common denominator, multiply by .
Step 4.3.7.5
Combine and .
Step 4.3.7.6
Combine the numerators over the common denominator.
Step 4.3.7.7
Rewrite in a factored form.
Tap for more steps...
Step 4.3.7.7.1
Use to rewrite as .
Step 4.3.7.7.2
Rewrite as .
Step 4.3.7.7.3
Let . Substitute for all occurrences of .
Step 4.3.7.7.4
Factor out of .
Tap for more steps...
Step 4.3.7.7.4.1
Raise to the power of .
Step 4.3.7.7.4.2
Factor out of .
Step 4.3.7.7.4.3
Factor out of .
Step 4.3.7.7.4.4
Factor out of .
Step 4.3.7.7.5
Replace all occurrences of with .
Step 4.3.7.7.6
Simplify.
Tap for more steps...
Step 4.3.7.7.6.1
Expand using the FOIL Method.
Tap for more steps...
Step 4.3.7.7.6.1.1
Apply the distributive property.
Step 4.3.7.7.6.1.2
Apply the distributive property.
Step 4.3.7.7.6.1.3
Apply the distributive property.
Step 4.3.7.7.6.2
Simplify and combine like terms.
Tap for more steps...
Step 4.3.7.7.6.2.1
Simplify each term.
Tap for more steps...
Step 4.3.7.7.6.2.1.1
Multiply by .
Step 4.3.7.7.6.2.1.2
Multiply by .
Step 4.3.7.7.6.2.1.3
Multiply by .
Step 4.3.7.7.6.2.1.4
Rewrite using the commutative property of multiplication.
Step 4.3.7.7.6.2.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 4.3.7.7.6.2.1.5.1
Move .
Step 4.3.7.7.6.2.1.5.2
Multiply by .
Step 4.3.7.7.6.2.2
Add and .
Step 4.3.7.7.6.2.3
Add and .
Step 4.3.7.7.6.3
Simplify each term.
Tap for more steps...
Step 4.3.7.7.6.3.1
Expand using the FOIL Method.
Tap for more steps...
Step 4.3.7.7.6.3.1.1
Apply the distributive property.
Step 4.3.7.7.6.3.1.2
Apply the distributive property.
Step 4.3.7.7.6.3.1.3
Apply the distributive property.
Step 4.3.7.7.6.3.2
Simplify and combine like terms.
Tap for more steps...
Step 4.3.7.7.6.3.2.1
Simplify each term.
Tap for more steps...
Step 4.3.7.7.6.3.2.1.1
Multiply by .
Step 4.3.7.7.6.3.2.1.2
Multiply by .
Step 4.3.7.7.6.3.2.1.3
Multiply by .
Step 4.3.7.7.6.3.2.1.4
Rewrite using the commutative property of multiplication.
Step 4.3.7.7.6.3.2.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 4.3.7.7.6.3.2.1.5.1
Move .
Step 4.3.7.7.6.3.2.1.5.2
Multiply by .
Step 4.3.7.7.6.3.2.2
Add and .
Step 4.3.7.7.6.3.2.3
Add and .
Step 4.3.8
Multiply by .
Step 4.3.9
Combine exponents.
Tap for more steps...
Step 4.3.9.1
Multiply by by adding the exponents.
Tap for more steps...
Step 4.3.9.1.1
Move .
Step 4.3.9.1.2
Use the power rule to combine exponents.
Step 4.3.9.1.3
Combine the numerators over the common denominator.
Step 4.3.9.1.4
Add and .
Step 4.3.9.1.5
Divide by .
Step 4.3.9.2
Simplify .
Step 4.3.10
Combine exponents.
Tap for more steps...
Step 4.3.10.1
Raise to the power of .
Step 4.3.10.2
Raise to the power of .
Step 4.3.10.3
Use the power rule to combine exponents.
Step 4.3.10.4
Add and .
Step 4.3.10.5
Raise to the power of .
Step 4.3.10.6
Raise to the power of .
Step 4.3.10.7
Use the power rule to combine exponents.
Step 4.3.10.8
Add and .
Step 4.3.11
Simplify the numerator.
Tap for more steps...
Step 4.3.11.1
Rewrite as .
Step 4.3.11.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 4.3.12
Factor out of .
Step 4.3.13
Cancel the common factors.
Tap for more steps...
Step 4.3.13.1
Factor out of .
Step 4.3.13.2
Cancel the common factor.
Step 4.3.13.3
Rewrite the expression.
Step 4.3.14
Factor out of .
Step 4.3.15
Cancel the common factors.
Tap for more steps...
Step 4.3.15.1
Factor out of .
Step 4.3.15.2
Cancel the common factor.
Step 4.3.15.3
Rewrite the expression.
Step 4.3.16
Rewrite as .
Step 4.3.17
Combine.
Step 4.3.18
Simplify the denominator.
Tap for more steps...
Step 4.3.18.1
Raise to the power of .
Step 4.3.18.2
Raise to the power of .
Step 4.3.18.3
Use the power rule to combine exponents.
Step 4.3.18.4
Add and .
Step 4.3.19
Simplify the denominator.
Tap for more steps...
Step 4.3.19.1
Rewrite as .
Tap for more steps...
Step 4.3.19.1.1
Use to rewrite as .
Step 4.3.19.1.2
Apply the power rule and multiply exponents, .
Step 4.3.19.1.3
Combine and .
Step 4.3.19.1.4
Cancel the common factor of .
Tap for more steps...
Step 4.3.19.1.4.1
Cancel the common factor.
Step 4.3.19.1.4.2
Rewrite the expression.
Step 4.3.19.1.5
Simplify.
Step 4.3.19.2
Expand using the FOIL Method.
Tap for more steps...
Step 4.3.19.2.1
Apply the distributive property.
Step 4.3.19.2.2
Apply the distributive property.
Step 4.3.19.2.3
Apply the distributive property.
Step 4.3.19.3
Simplify and combine like terms.
Tap for more steps...
Step 4.3.19.3.1
Simplify each term.
Tap for more steps...
Step 4.3.19.3.1.1
Multiply by .
Step 4.3.19.3.1.2
Multiply by .
Step 4.3.19.3.1.3
Multiply by .
Step 4.3.19.3.1.4
Rewrite using the commutative property of multiplication.
Step 4.3.19.3.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 4.3.19.3.1.5.1
Move .
Step 4.3.19.3.1.5.2
Multiply by .
Step 4.3.19.3.2
Add and .
Step 4.3.19.3.3
Add and .
Step 4.3.19.4
Rewrite as .
Step 4.3.19.5
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 4.3.20
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 4.3.20.1
Cancel the common factor.
Step 4.3.20.2
Rewrite the expression.
Step 4.3.20.3
Cancel the common factor.
Step 4.3.20.4
Divide by .
Step 4.4
Since and , then is the inverse of .