Enter a problem...
Trigonometry Examples
cos(arccsc(u))
Step 1
Interchange the variables.
u=cos(arccsc(y))
Step 2
Step 2.1
Rewrite the equation as cos(arccsc(y))=u.
cos(arccsc(y))=u
Step 2.2
Take the inverse cosine of both sides of the equation to extract arccsc(y) from inside the cosine.
arccsc(y)=arccos(u)
Step 2.3
Take the inverse arccosecant of both sides of the equation to extract y from inside the arccosecant.
y=csc(arccos(u))
Step 2.4
Simplify the right side.
Step 2.4.1
Simplify csc(arccos(u)).
Step 2.4.1.1
Draw a triangle in the plane with vertices (u,√12-u2), (u,0), and the origin. Then arccos(u) is the angle between the positive x-axis and the ray beginning at the origin and passing through (u,√12-u2). Therefore, csc(arccos(u)) is 1√1-u2.
y=1√1-u2
Step 2.4.1.2
Simplify the denominator.
Step 2.4.1.2.1
Rewrite 1 as 12.
y=1√12-u2
Step 2.4.1.2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=1 and b=u.
y=1√(1+u)(1-u)
y=1√(1+u)(1-u)
Step 2.4.1.3
Multiply 1√(1+u)(1-u) by √(1+u)(1-u)√(1+u)(1-u).
y=1√(1+u)(1-u)⋅√(1+u)(1-u)√(1+u)(1-u)
Step 2.4.1.4
Combine and simplify the denominator.
Step 2.4.1.4.1
Multiply 1√(1+u)(1-u) by √(1+u)(1-u)√(1+u)(1-u).
y=√(1+u)(1-u)√(1+u)(1-u)√(1+u)(1-u)
Step 2.4.1.4.2
Raise √(1+u)(1-u) to the power of 1.
y=√(1+u)(1-u)√(1+u)(1-u)1√(1+u)(1-u)
Step 2.4.1.4.3
Raise √(1+u)(1-u) to the power of 1.
y=√(1+u)(1-u)√(1+u)(1-u)1√(1+u)(1-u)1
Step 2.4.1.4.4
Use the power rule aman=am+n to combine exponents.
y=√(1+u)(1-u)√(1+u)(1-u)1+1
Step 2.4.1.4.5
Add 1 and 1.
y=√(1+u)(1-u)√(1+u)(1-u)2
Step 2.4.1.4.6
Rewrite √(1+u)(1-u)2 as (1+u)(1-u).
Step 2.4.1.4.6.1
Use n√ax=axn to rewrite √(1+u)(1-u) as ((1+u)(1-u))12.
y=√(1+u)(1-u)(((1+u)(1-u))12)2
Step 2.4.1.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
y=√(1+u)(1-u)((1+u)(1-u))12⋅2
Step 2.4.1.4.6.3
Combine 12 and 2.
y=√(1+u)(1-u)((1+u)(1-u))22
Step 2.4.1.4.6.4
Cancel the common factor of 2.
Step 2.4.1.4.6.4.1
Cancel the common factor.
y=√(1+u)(1-u)((1+u)(1-u))22
Step 2.4.1.4.6.4.2
Rewrite the expression.
y=√(1+u)(1-u)((1+u)(1-u))1
y=√(1+u)(1-u)((1+u)(1-u))1
Step 2.4.1.4.6.5
Simplify.
y=√(1+u)(1-u)(1+u)(1-u)
y=√(1+u)(1-u)(1+u)(1-u)
y=√(1+u)(1-u)(1+u)(1-u)
y=√(1+u)(1-u)(1+u)(1-u)
y=√(1+u)(1-u)(1+u)(1-u)
y=√(1+u)(1-u)(1+u)(1-u)
Step 3
Replace y with f-1(u) to show the final answer.
f-1(u)=√(1+u)(1-u)(1+u)(1-u)
Step 4
Step 4.1
To verify the inverse, check if f-1(f(u))=u and f(f-1(u))=u.
Step 4.2
Evaluate f-1(f(u)).
Step 4.2.1
Set up the composite result function.
f-1(f(u))
Step 4.2.2
Evaluate f-1(cos(arccsc(u))) by substituting in the value of f into f-1.
f-1(cos(arccsc(u)))=√(1+cos(arccsc(u)))(1-(cos(arccsc(u))))(1+cos(arccsc(u)))(1-(cos(arccsc(u))))
Step 4.2.3
Remove parentheses.
f-1(cos(arccsc(u)))=√(1+cos(arccsc(u)))(1-(cos(arccsc(u))))(1+cos(arccsc(u)))(1-(cos(arccsc(u))))
Step 4.2.4
Simplify the numerator.
Step 4.2.4.1
Draw a triangle in the plane with vertices (√u2-12,1), (√u2-12,0), and the origin. Then arccsc(u) is the angle between the positive x-axis and the ray beginning at the origin and passing through (√u2-12,1). Therefore, cos(arccsc(u)) is √u2-1u.
f-1(cos(arccsc(u)))=√(1+√u2-1u)(1-cos(arccsc(u)))(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.2
Simplify the numerator.
Step 4.2.4.2.1
Rewrite 1 as 12.
f-1(cos(arccsc(u)))=√(1+√u2-12u)(1-cos(arccsc(u)))(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=u and b=1.
f-1(cos(arccsc(u)))=√(1+√(u+1)(u-1)u)(1-cos(arccsc(u)))(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=√(1+√(u+1)(u-1)u)(1-cos(arccsc(u)))(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.3
Write 1 as a fraction with a common denominator.
f-1(cos(arccsc(u)))=√(uu+√(u+1)(u-1)u)(1-cos(arccsc(u)))(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.4
Combine the numerators over the common denominator.
f-1(cos(arccsc(u)))=√u+√(u+1)(u-1)u⋅(1-cos(arccsc(u)))(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.5
Draw a triangle in the plane with vertices (√u2-12,1), (√u2-12,0), and the origin. Then arccsc(u) is the angle between the positive x-axis and the ray beginning at the origin and passing through (√u2-12,1). Therefore, cos(arccsc(u)) is √u2-1u.
f-1(cos(arccsc(u)))=√u+√(u+1)(u-1)u⋅(1-√u2-1u)(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.6
Simplify the numerator.
Step 4.2.4.6.1
Rewrite 1 as 12.
f-1(cos(arccsc(u)))=√u+√(u+1)(u-1)u⋅(1-√u2-12u)(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.6.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=u and b=1.
f-1(cos(arccsc(u)))=√u+√(u+1)(u-1)u⋅(1-√(u+1)(u-1)u)(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=√u+√(u+1)(u-1)u⋅(1-√(u+1)(u-1)u)(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.7
Write 1 as a fraction with a common denominator.
f-1(cos(arccsc(u)))=√u+√(u+1)(u-1)u⋅(uu-√(u+1)(u-1)u)(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.8
Combine the numerators over the common denominator.
f-1(cos(arccsc(u)))=√u+√(u+1)(u-1)u⋅u-√(u+1)(u-1)u(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.9
Multiply u+√(u+1)(u-1)u by u-√(u+1)(u-1)u.
f-1(cos(arccsc(u)))=√(u+√(u+1)(u-1))(u-√(u+1)(u-1))u⋅u(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.10
Multiply u by u.
f-1(cos(arccsc(u)))=√(u+√(u+1)(u-1))(u-√(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.11
Expand (u+√(u+1)(u-1))(u-√(u+1)(u-1)) using the FOIL Method.
Step 4.2.4.11.1
Apply the distributive property.
f-1(cos(arccsc(u)))=√u(u-√(u+1)(u-1))+√(u+1)(u-1)(u-√(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.11.2
Apply the distributive property.
f-1(cos(arccsc(u)))=√u⋅u+u(-√(u+1)(u-1))+√(u+1)(u-1)(u-√(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.11.3
Apply the distributive property.
f-1(cos(arccsc(u)))=√u⋅u+u(-√(u+1)(u-1))+√(u+1)(u-1)u+√(u+1)(u-1)(-√(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=√u⋅u+u(-√(u+1)(u-1))+√(u+1)(u-1)u+√(u+1)(u-1)(-√(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.12
Combine the opposite terms in u⋅u+u(-√(u+1)(u-1))+√(u+1)(u-1)u+√(u+1)(u-1)(-√(u+1)(u-1)).
Step 4.2.4.12.1
Reorder the factors in the terms u(-√(u+1)(u-1)) and √(u+1)(u-1)u.
f-1(cos(arccsc(u)))=√u⋅u-u√(u+1)(u-1)+u√(u+1)(u-1)+√(u+1)(u-1)(-√(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.12.2
Add -u√(u+1)(u-1) and u√(u+1)(u-1).
f-1(cos(arccsc(u)))=√u⋅u+0+√(u+1)(u-1)(-√(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.12.3
Add u⋅u and 0.
f-1(cos(arccsc(u)))=√u⋅u+√(u+1)(u-1)(-√(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=√u⋅u+√(u+1)(u-1)(-√(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13
Simplify each term.
Step 4.2.4.13.1
Multiply u by u.
f-1(cos(arccsc(u)))=√u2+√(u+1)(u-1)(-√(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.2
Rewrite using the commutative property of multiplication.
f-1(cos(arccsc(u)))=√u2-√(u+1)(u-1)√(u+1)(u-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.3
Multiply -√(u+1)(u-1)√(u+1)(u-1).
Step 4.2.4.13.3.1
Raise √(u+1)(u-1) to the power of 1.
f-1(cos(arccsc(u)))=√u2-(√(u+1)(u-1)√(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.3.2
Raise √(u+1)(u-1) to the power of 1.
f-1(cos(arccsc(u)))=√u2-(√(u+1)(u-1)√(u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.3.3
Use the power rule aman=am+n to combine exponents.
f-1(cos(arccsc(u)))=√u2-√(u+1)(u-1)1+1u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.3.4
Add 1 and 1.
f-1(cos(arccsc(u)))=√u2-√(u+1)(u-1)2u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=√u2-√(u+1)(u-1)2u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.4
Rewrite √(u+1)(u-1)2 as (u+1)(u-1).
Step 4.2.4.13.4.1
Use n√ax=axn to rewrite √(u+1)(u-1) as ((u+1)(u-1))12.
f-1(cos(arccsc(u)))=√u2-(((u+1)(u-1))12)2u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.4.2
Apply the power rule and multiply exponents, (am)n=amn.
f-1(cos(arccsc(u)))=√u2-((u+1)(u-1))12⋅2u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.4.3
Combine 12 and 2.
f-1(cos(arccsc(u)))=√u2-((u+1)(u-1))22u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.4.4
Cancel the common factor of 2.
Step 4.2.4.13.4.4.1
Cancel the common factor.
f-1(cos(arccsc(u)))=√u2-((u+1)(u-1))22u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.4.4.2
Rewrite the expression.
f-1(cos(arccsc(u)))=√u2-((u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=√u2-((u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.4.5
Simplify.
f-1(cos(arccsc(u)))=√u2-((u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=√u2-((u+1)(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.5
Expand (u+1)(u-1) using the FOIL Method.
Step 4.2.4.13.5.1
Apply the distributive property.
f-1(cos(arccsc(u)))=√u2-(u(u-1)+1(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.5.2
Apply the distributive property.
f-1(cos(arccsc(u)))=√u2-(u⋅u+u⋅-1+1(u-1))u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.5.3
Apply the distributive property.
f-1(cos(arccsc(u)))=√u2-(u⋅u+u⋅-1+1u+1⋅-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=√u2-(u⋅u+u⋅-1+1u+1⋅-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.6
Simplify and combine like terms.
Step 4.2.4.13.6.1
Simplify each term.
Step 4.2.4.13.6.1.1
Multiply u by u.
f-1(cos(arccsc(u)))=√u2-(u2+u⋅-1+1u+1⋅-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.6.1.2
Move -1 to the left of u.
f-1(cos(arccsc(u)))=√u2-(u2-1⋅u+1u+1⋅-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.6.1.3
Rewrite -1u as -u.
f-1(cos(arccsc(u)))=√u2-(u2-u+1u+1⋅-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.6.1.4
Multiply u by 1.
f-1(cos(arccsc(u)))=√u2-(u2-u+u+1⋅-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.6.1.5
Multiply -1 by 1.
f-1(cos(arccsc(u)))=√u2-(u2-u+u-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=√u2-(u2-u+u-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.6.2
Add -u and u.
f-1(cos(arccsc(u)))=√u2-(u2+0-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.6.3
Add u2 and 0.
f-1(cos(arccsc(u)))=√u2-(u2-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=√u2-(u2-1)u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.7
Apply the distributive property.
f-1(cos(arccsc(u)))=√u2-u2+1u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.13.8
Multiply -1 by -1.
f-1(cos(arccsc(u)))=√u2-u2+1u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=√u2-u2+1u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.14
Subtract u2 from u2.
f-1(cos(arccsc(u)))=√0+1u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.15
Add 0 and 1.
f-1(cos(arccsc(u)))=√1u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.16
Rewrite 1 as 12.
f-1(cos(arccsc(u)))=√12u2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.17
Rewrite 12u2 as (1u)2.
f-1(cos(arccsc(u)))=√(1u)2(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.4.18
Pull terms out from under the radical, assuming positive real numbers.
f-1(cos(arccsc(u)))=1u(1+cos(arccsc(u)))(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=1u(1+cos(arccsc(u)))(1-cos(arccsc(u)))
Step 4.2.5
Simplify the denominator.
Step 4.2.5.1
Draw a triangle in the plane with vertices (√u2-12,1), (√u2-12,0), and the origin. Then arccsc(u) is the angle between the positive x-axis and the ray beginning at the origin and passing through (√u2-12,1). Therefore, cos(arccsc(u)) is √u2-1u.
f-1(cos(arccsc(u)))=1u(1+√u2-1u)(1-cos(arccsc(u)))
Step 4.2.5.2
Simplify the numerator.
Step 4.2.5.2.1
Rewrite 1 as 12.
f-1(cos(arccsc(u)))=1u(1+√u2-12u)(1-cos(arccsc(u)))
Step 4.2.5.2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=u and b=1.
f-1(cos(arccsc(u)))=1u(1+√(u+1)(u-1)u)(1-cos(arccsc(u)))
f-1(cos(arccsc(u)))=1u(1+√(u+1)(u-1)u)(1-cos(arccsc(u)))
Step 4.2.5.3
Write 1 as a fraction with a common denominator.
f-1(cos(arccsc(u)))=1u(uu+√(u+1)(u-1)u)(1-cos(arccsc(u)))
Step 4.2.5.4
Combine the numerators over the common denominator.
f-1(cos(arccsc(u)))=1uu+√(u+1)(u-1)u⋅(1-cos(arccsc(u)))
Step 4.2.5.5
Draw a triangle in the plane with vertices (√u2-12,1), (√u2-12,0), and the origin. Then arccsc(u) is the angle between the positive x-axis and the ray beginning at the origin and passing through (√u2-12,1). Therefore, cos(arccsc(u)) is √u2-1u.
f-1(cos(arccsc(u)))=1uu+√(u+1)(u-1)u⋅(1-√u2-1u)
Step 4.2.5.6
Simplify the numerator.
Step 4.2.5.6.1
Rewrite 1 as 12.
f-1(cos(arccsc(u)))=1uu+√(u+1)(u-1)u⋅(1-√u2-12u)
Step 4.2.5.6.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=u and b=1.
f-1(cos(arccsc(u)))=1uu+√(u+1)(u-1)u⋅(1-√(u+1)(u-1)u)
f-1(cos(arccsc(u)))=1uu+√(u+1)(u-1)u⋅(1-√(u+1)(u-1)u)
Step 4.2.5.7
Write 1 as a fraction with a common denominator.
f-1(cos(arccsc(u)))=1uu+√(u+1)(u-1)u⋅(uu-√(u+1)(u-1)u)
Step 4.2.5.8
Combine the numerators over the common denominator.
f-1(cos(arccsc(u)))=1uu+√(u+1)(u-1)u⋅u-√(u+1)(u-1)u
f-1(cos(arccsc(u)))=1uu+√(u+1)(u-1)u⋅u-√(u+1)(u-1)u
Step 4.2.6
Multiply u+√(u+1)(u-1)u by u-√(u+1)(u-1)u.
f-1(cos(arccsc(u)))=1u(u+√(u+1)(u-1))(u-√(u+1)(u-1))u⋅u
Step 4.2.7
Simplify the denominator.
Step 4.2.7.1
Use the power rule aman=am+n to combine exponents.
f-1(cos(arccsc(u)))=1u(u+√(u+1)(u-1))(u-√(u+1)(u-1))u1+1
Step 4.2.7.2
Add 1 and 1.
f-1(cos(arccsc(u)))=1u(u+√(u+1)(u-1))(u-√(u+1)(u-1))u2
f-1(cos(arccsc(u)))=1u(u+√(u+1)(u-1))(u-√(u+1)(u-1))u2
Step 4.2.8
Simplify the denominator.
Step 4.2.8.1
Expand (u+√(u+1)(u-1))(u-√(u+1)(u-1)) using the FOIL Method.
Step 4.2.8.1.1
Apply the distributive property.
f-1(cos(arccsc(u)))=1uu(u-√(u+1)(u-1))+√(u+1)(u-1)(u-√(u+1)(u-1))u2
Step 4.2.8.1.2
Apply the distributive property.
f-1(cos(arccsc(u)))=1uu⋅u+u(-√(u+1)(u-1))+√(u+1)(u-1)(u-√(u+1)(u-1))u2
Step 4.2.8.1.3
Apply the distributive property.
f-1(cos(arccsc(u)))=1uu⋅u+u(-√(u+1)(u-1))+√(u+1)(u-1)u+√(u+1)(u-1)(-√(u+1)(u-1))u2
f-1(cos(arccsc(u)))=1uu⋅u+u(-√(u+1)(u-1))+√(u+1)(u-1)u+√(u+1)(u-1)(-√(u+1)(u-1))u2
Step 4.2.8.2
Combine the opposite terms in u⋅u+u(-√(u+1)(u-1))+√(u+1)(u-1)u+√(u+1)(u-1)(-√(u+1)(u-1)).
Step 4.2.8.2.1
Reorder the factors in the terms u(-√(u+1)(u-1)) and √(u+1)(u-1)u.
f-1(cos(arccsc(u)))=1uu⋅u-u√(u+1)(u-1)+u√(u+1)(u-1)+√(u+1)(u-1)(-√(u+1)(u-1))u2
Step 4.2.8.2.2
Add -u√(u+1)(u-1) and u√(u+1)(u-1).
f-1(cos(arccsc(u)))=1uu⋅u+0+√(u+1)(u-1)(-√(u+1)(u-1))u2
Step 4.2.8.2.3
Add u⋅u and 0.
f-1(cos(arccsc(u)))=1uu⋅u+√(u+1)(u-1)(-√(u+1)(u-1))u2
f-1(cos(arccsc(u)))=1uu⋅u+√(u+1)(u-1)(-√(u+1)(u-1))u2
Step 4.2.8.3
Simplify each term.
Step 4.2.8.3.1
Multiply u by u.
f-1(cos(arccsc(u)))=1uu2+√(u+1)(u-1)(-√(u+1)(u-1))u2
Step 4.2.8.3.2
Rewrite using the commutative property of multiplication.
f-1(cos(arccsc(u)))=1uu2-√(u+1)(u-1)√(u+1)(u-1)u2
Step 4.2.8.3.3
Multiply -√(u+1)(u-1)√(u+1)(u-1).
Step 4.2.8.3.3.1
Raise √(u+1)(u-1) to the power of 1.
f-1(cos(arccsc(u)))=1uu2-(√(u+1)(u-1)√(u+1)(u-1))u2
Step 4.2.8.3.3.2
Raise √(u+1)(u-1) to the power of 1.
f-1(cos(arccsc(u)))=1uu2-(√(u+1)(u-1)√(u+1)(u-1))u2
Step 4.2.8.3.3.3
Use the power rule aman=am+n to combine exponents.
f-1(cos(arccsc(u)))=1uu2-√(u+1)(u-1)1+1u2
Step 4.2.8.3.3.4
Add 1 and 1.
f-1(cos(arccsc(u)))=1uu2-√(u+1)(u-1)2u2
f-1(cos(arccsc(u)))=1uu2-√(u+1)(u-1)2u2
Step 4.2.8.3.4
Rewrite √(u+1)(u-1)2 as (u+1)(u-1).
Step 4.2.8.3.4.1
Use n√ax=axn to rewrite √(u+1)(u-1) as ((u+1)(u-1))12.
f-1(cos(arccsc(u)))=1uu2-(((u+1)(u-1))12)2u2
Step 4.2.8.3.4.2
Apply the power rule and multiply exponents, (am)n=amn.
f-1(cos(arccsc(u)))=1uu2-((u+1)(u-1))12⋅2u2
Step 4.2.8.3.4.3
Combine 12 and 2.
f-1(cos(arccsc(u)))=1uu2-((u+1)(u-1))22u2
Step 4.2.8.3.4.4
Cancel the common factor of 2.
Step 4.2.8.3.4.4.1
Cancel the common factor.
f-1(cos(arccsc(u)))=1uu2-((u+1)(u-1))22u2
Step 4.2.8.3.4.4.2
Rewrite the expression.
f-1(cos(arccsc(u)))=1uu2-((u+1)(u-1))u2
f-1(cos(arccsc(u)))=1uu2-((u+1)(u-1))u2
Step 4.2.8.3.4.5
Simplify.
f-1(cos(arccsc(u)))=1uu2-((u+1)(u-1))u2
f-1(cos(arccsc(u)))=1uu2-((u+1)(u-1))u2
Step 4.2.8.3.5
Expand (u+1)(u-1) using the FOIL Method.
Step 4.2.8.3.5.1
Apply the distributive property.
f-1(cos(arccsc(u)))=1uu2-(u(u-1)+1(u-1))u2
Step 4.2.8.3.5.2
Apply the distributive property.
f-1(cos(arccsc(u)))=1uu2-(u⋅u+u⋅-1+1(u-1))u2
Step 4.2.8.3.5.3
Apply the distributive property.
f-1(cos(arccsc(u)))=1uu2-(u⋅u+u⋅-1+1u+1⋅-1)u2
f-1(cos(arccsc(u)))=1uu2-(u⋅u+u⋅-1+1u+1⋅-1)u2
Step 4.2.8.3.6
Simplify and combine like terms.
Step 4.2.8.3.6.1
Simplify each term.
Step 4.2.8.3.6.1.1
Multiply u by u.
f-1(cos(arccsc(u)))=1uu2-(u2+u⋅-1+1u+1⋅-1)u2
Step 4.2.8.3.6.1.2
Move -1 to the left of u.
f-1(cos(arccsc(u)))=1uu2-(u2-1⋅u+1u+1⋅-1)u2
Step 4.2.8.3.6.1.3
Rewrite -1u as -u.
f-1(cos(arccsc(u)))=1uu2-(u2-u+1u+1⋅-1)u2
Step 4.2.8.3.6.1.4
Multiply u by 1.
f-1(cos(arccsc(u)))=1uu2-(u2-u+u+1⋅-1)u2
Step 4.2.8.3.6.1.5
Multiply -1 by 1.
f-1(cos(arccsc(u)))=1uu2-(u2-u+u-1)u2
f-1(cos(arccsc(u)))=1uu2-(u2-u+u-1)u2
Step 4.2.8.3.6.2
Add -u and u.
f-1(cos(arccsc(u)))=1uu2-(u2+0-1)u2
Step 4.2.8.3.6.3
Add u2 and 0.
f-1(cos(arccsc(u)))=1uu2-(u2-1)u2
f-1(cos(arccsc(u)))=1uu2-(u2-1)u2
Step 4.2.8.3.7
Apply the distributive property.
f-1(cos(arccsc(u)))=1uu2-u2+1u2
Step 4.2.8.3.8
Multiply -1 by -1.
f-1(cos(arccsc(u)))=1uu2-u2+1u2
f-1(cos(arccsc(u)))=1uu2-u2+1u2
Step 4.2.8.4
Subtract u2 from u2.
f-1(cos(arccsc(u)))=1u0+1u2
Step 4.2.8.5
Add 0 and 1.
f-1(cos(arccsc(u)))=1u1u2
f-1(cos(arccsc(u)))=1u1u2
Step 4.2.9
Multiply the numerator by the reciprocal of the denominator.
f-1(cos(arccsc(u)))=1u⋅u2
Step 4.2.10
Cancel the common factor of u.
Step 4.2.10.1
Factor u out of u2.
f-1(cos(arccsc(u)))=1u⋅(u⋅u)
Step 4.2.10.2
Cancel the common factor.
f-1(cos(arccsc(u)))=1u⋅(u⋅u)
Step 4.2.10.3
Rewrite the expression.
f-1(cos(arccsc(u)))=u
f-1(cos(arccsc(u)))=u
f-1(cos(arccsc(u)))=u
Step 4.3
Evaluate f(f-1(u)).
Step 4.3.1
Set up the composite result function.
f(f-1(u))
Step 4.3.2
Evaluate f(√(1+u)(1-u)(1+u)(1-u)) by substituting in the value of f-1 into f.
f(√(1+u)(1-u)(1+u)(1-u))=cos(arccsc(√(1+u)(1-u)(1+u)(1-u)))
Step 4.3.3
Draw a triangle in the plane with vertices (√(√(1+u)(1-u)(1+u)(1-u))2-12,1), (√(√(1+u)(1-u)(1+u)(1-u))2-12,0), and the origin. Then arccsc(√(1+u)(1-u)(1+u)(1-u)) is the angle between the positive x-axis and the ray beginning at the origin and passing through (√(√(1+u)(1-u)(1+u)(1-u))2-12,1). Therefore, cos(arccsc(√(1+u)(1-u)(1+u)(1-u))) is √(√(1+u)(1-u)(1+u)(1-u))2-1√(1+u)(1-u)(1+u)(1-u).
f(√(1+u)(1-u)(1+u)(1-u))=√(√(1+u)(1-u)(1+u)(1-u))2-1√(1+u)(1-u)(1+u)(1-u)
Step 4.3.4
Multiply the numerator by the reciprocal of the denominator.
f(√(1+u)(1-u)(1+u)(1-u))=√(√(1+u)(1-u)(1+u)(1-u))2-1((1+u)(1-u)√(1+u)(1-u))
Step 4.3.5
Rewrite 1 as 12.
f(√(1+u)(1-u)(1+u)(1-u))=√(√(1+u)(1-u)(1+u)(1-u))2-12((1+u)(1-u)√(1+u)(1-u))
Step 4.3.6
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=√(1+u)(1-u)(1+u)(1-u) and b=1.
f(√(1+u)(1-u)(1+u)(1-u))=√(√(1+u)(1-u)(1+u)(1-u)+1)(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7
Simplify.
Step 4.3.7.1
Write 1 as a fraction with a common denominator.
f(√(1+u)(1-u)(1+u)(1-u))=√(√(1+u)(1-u)(1+u)(1-u)+(1+u)(1-u)(1+u)(1-u))(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.2
Combine the numerators over the common denominator.
f(√(1+u)(1-u)(1+u)(1-u))=√√(1+u)(1-u)+(1+u)(1-u)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3
Rewrite √(1+u)(1-u)+(1+u)(1-u)(1+u)(1-u) in a factored form.
Step 4.3.7.3.1
Use n√ax=axn to rewrite √(1+u)(1-u) as ((1+u)(1-u))12.
f(√(1+u)(1-u)(1+u)(1-u))=√((1+u)(1-u))12+(1+u)(1-u)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.2
Rewrite (1+u)(1-u) as (((1+u)(1-u))12)2.
f(√(1+u)(1-u)(1+u)(1-u))=√((1+u)(1-u))12+(((1+u)(1-u))12)2(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.3
Let u=((1+u)(1-u))12. Substitute u for all occurrences of ((1+u)(1-u))12.
f(√(1+u)(1-u)(1+u)(1-u))=√u+u2(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.4
Factor u out of u+u2.
Step 4.3.7.3.4.1
Raise u to the power of 1.
f(√(1+u)(1-u)(1+u)(1-u))=√u+u2(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.4.2
Factor u out of u1.
f(√(1+u)(1-u)(1+u)(1-u))=√u⋅1+u2(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.4.3
Factor u out of u2.
f(√(1+u)(1-u)(1+u)(1-u))=√u⋅1+u⋅u(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.4.4
Factor u out of u⋅1+u⋅u.
f(√(1+u)(1-u)(1+u)(1-u))=√u(1+u)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
f(√(1+u)(1-u)(1+u)(1-u))=√u(1+u)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.5
Replace all occurrences of u with ((1+u)(1-u))12.
f(√(1+u)(1-u)(1+u)(1-u))=√((1+u)(1-u))12(1+((1+u)(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6
Simplify.
Step 4.3.7.3.6.1
Expand (1+u)(1-u) using the FOIL Method.
Step 4.3.7.3.6.1.1
Apply the distributive property.
f(√(1+u)(1-u)(1+u)(1-u))=√(1(1-u)+u(1-u))12(1+((1+u)(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.1.2
Apply the distributive property.
f(√(1+u)(1-u)(1+u)(1-u))=√(1⋅1+1(-u)+u(1-u))12(1+((1+u)(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.1.3
Apply the distributive property.
f(√(1+u)(1-u)(1+u)(1-u))=√(1⋅1+1(-u)+u⋅1+u(-u))12(1+((1+u)(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
f(√(1+u)(1-u)(1+u)(1-u))=√(1⋅1+1(-u)+u⋅1+u(-u))12(1+((1+u)(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.2
Simplify and combine like terms.
Step 4.3.7.3.6.2.1
Simplify each term.
Step 4.3.7.3.6.2.1.1
Multiply 1 by 1.
f(√(1+u)(1-u)(1+u)(1-u))=√(1+1(-u)+u⋅1+u(-u))12(1+((1+u)(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.2.1.2
Multiply -u by 1.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u+u⋅1+u(-u))12(1+((1+u)(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.2.1.3
Multiply u by 1.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u+u+u(-u))12(1+((1+u)(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.2.1.4
Rewrite using the commutative property of multiplication.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u+u-u⋅u)12(1+((1+u)(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.2.1.5
Multiply u by u by adding the exponents.
Step 4.3.7.3.6.2.1.5.1
Move u.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u+u-(u⋅u))12(1+((1+u)(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.2.1.5.2
Multiply u by u.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u+u-u2)12(1+((1+u)(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u+u-u2)12(1+((1+u)(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u+u-u2)12(1+((1+u)(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.2.2
Add -u and u.
f(√(1+u)(1-u)(1+u)(1-u))=√(1+0-u2)12(1+((1+u)(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.2.3
Add 1 and 0.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+((1+u)(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+((1+u)(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.3
Simplify each term.
Step 4.3.7.3.6.3.1
Expand (1+u)(1-u) using the FOIL Method.
Step 4.3.7.3.6.3.1.1
Apply the distributive property.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1(1-u)+u(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.3.1.2
Apply the distributive property.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1⋅1+1(-u)+u(1-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.3.1.3
Apply the distributive property.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1⋅1+1(-u)+u⋅1+u(-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1⋅1+1(-u)+u⋅1+u(-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.3.2
Simplify and combine like terms.
Step 4.3.7.3.6.3.2.1
Simplify each term.
Step 4.3.7.3.6.3.2.1.1
Multiply 1 by 1.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1+1(-u)+u⋅1+u(-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.3.2.1.2
Multiply -u by 1.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1-u+u⋅1+u(-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.3.2.1.3
Multiply u by 1.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1-u+u+u(-u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.3.2.1.4
Rewrite using the commutative property of multiplication.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1-u+u-u⋅u)12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.3.2.1.5
Multiply u by u by adding the exponents.
Step 4.3.7.3.6.3.2.1.5.1
Move u.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1-u+u-(u⋅u))12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.3.2.1.5.2
Multiply u by u.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1-u+u-u2)12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1-u+u-u2)12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1-u+u-u2)12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.3.2.2
Add -u and u.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1+0-u2)12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.3.6.3.2.3
Add 1 and 0.
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1-u2)12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1-u2)12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1-u2)12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1-u2)12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
f(√(1+u)(1-u)(1+u)(1-u))=√(1-u2)12(1+(1-u2)12)(1+u)(1-u)⋅(√(1+u)(1-u)(1+u)(1-u)-1)((1+u)(1-u)√(1+u)(1-u))
Step 4.3.7.4
To write as a fraction with a common denominator, multiply by .
Step 4.3.7.5
Combine and .
Step 4.3.7.6
Combine the numerators over the common denominator.
Step 4.3.7.7
Rewrite in a factored form.
Step 4.3.7.7.1
Use to rewrite as .
Step 4.3.7.7.2
Rewrite as .
Step 4.3.7.7.3
Let . Substitute for all occurrences of .
Step 4.3.7.7.4
Factor out of .
Step 4.3.7.7.4.1
Raise to the power of .
Step 4.3.7.7.4.2
Factor out of .
Step 4.3.7.7.4.3
Factor out of .
Step 4.3.7.7.4.4
Factor out of .
Step 4.3.7.7.5
Replace all occurrences of with .
Step 4.3.7.7.6
Simplify.
Step 4.3.7.7.6.1
Expand using the FOIL Method.
Step 4.3.7.7.6.1.1
Apply the distributive property.
Step 4.3.7.7.6.1.2
Apply the distributive property.
Step 4.3.7.7.6.1.3
Apply the distributive property.
Step 4.3.7.7.6.2
Simplify and combine like terms.
Step 4.3.7.7.6.2.1
Simplify each term.
Step 4.3.7.7.6.2.1.1
Multiply by .
Step 4.3.7.7.6.2.1.2
Multiply by .
Step 4.3.7.7.6.2.1.3
Multiply by .
Step 4.3.7.7.6.2.1.4
Rewrite using the commutative property of multiplication.
Step 4.3.7.7.6.2.1.5
Multiply by by adding the exponents.
Step 4.3.7.7.6.2.1.5.1
Move .
Step 4.3.7.7.6.2.1.5.2
Multiply by .
Step 4.3.7.7.6.2.2
Add and .
Step 4.3.7.7.6.2.3
Add and .
Step 4.3.7.7.6.3
Simplify each term.
Step 4.3.7.7.6.3.1
Expand using the FOIL Method.
Step 4.3.7.7.6.3.1.1
Apply the distributive property.
Step 4.3.7.7.6.3.1.2
Apply the distributive property.
Step 4.3.7.7.6.3.1.3
Apply the distributive property.
Step 4.3.7.7.6.3.2
Simplify and combine like terms.
Step 4.3.7.7.6.3.2.1
Simplify each term.
Step 4.3.7.7.6.3.2.1.1
Multiply by .
Step 4.3.7.7.6.3.2.1.2
Multiply by .
Step 4.3.7.7.6.3.2.1.3
Multiply by .
Step 4.3.7.7.6.3.2.1.4
Rewrite using the commutative property of multiplication.
Step 4.3.7.7.6.3.2.1.5
Multiply by by adding the exponents.
Step 4.3.7.7.6.3.2.1.5.1
Move .
Step 4.3.7.7.6.3.2.1.5.2
Multiply by .
Step 4.3.7.7.6.3.2.2
Add and .
Step 4.3.7.7.6.3.2.3
Add and .
Step 4.3.8
Multiply by .
Step 4.3.9
Combine exponents.
Step 4.3.9.1
Multiply by by adding the exponents.
Step 4.3.9.1.1
Move .
Step 4.3.9.1.2
Use the power rule to combine exponents.
Step 4.3.9.1.3
Combine the numerators over the common denominator.
Step 4.3.9.1.4
Add and .
Step 4.3.9.1.5
Divide by .
Step 4.3.9.2
Simplify .
Step 4.3.10
Combine exponents.
Step 4.3.10.1
Raise to the power of .
Step 4.3.10.2
Raise to the power of .
Step 4.3.10.3
Use the power rule to combine exponents.
Step 4.3.10.4
Add and .
Step 4.3.10.5
Raise to the power of .
Step 4.3.10.6
Raise to the power of .
Step 4.3.10.7
Use the power rule to combine exponents.
Step 4.3.10.8
Add and .
Step 4.3.11
Simplify the numerator.
Step 4.3.11.1
Rewrite as .
Step 4.3.11.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 4.3.12
Factor out of .
Step 4.3.13
Cancel the common factors.
Step 4.3.13.1
Factor out of .
Step 4.3.13.2
Cancel the common factor.
Step 4.3.13.3
Rewrite the expression.
Step 4.3.14
Factor out of .
Step 4.3.15
Cancel the common factors.
Step 4.3.15.1
Factor out of .
Step 4.3.15.2
Cancel the common factor.
Step 4.3.15.3
Rewrite the expression.
Step 4.3.16
Rewrite as .
Step 4.3.17
Combine.
Step 4.3.18
Simplify the denominator.
Step 4.3.18.1
Raise to the power of .
Step 4.3.18.2
Raise to the power of .
Step 4.3.18.3
Use the power rule to combine exponents.
Step 4.3.18.4
Add and .
Step 4.3.19
Simplify the denominator.
Step 4.3.19.1
Rewrite as .
Step 4.3.19.1.1
Use to rewrite as .
Step 4.3.19.1.2
Apply the power rule and multiply exponents, .
Step 4.3.19.1.3
Combine and .
Step 4.3.19.1.4
Cancel the common factor of .
Step 4.3.19.1.4.1
Cancel the common factor.
Step 4.3.19.1.4.2
Rewrite the expression.
Step 4.3.19.1.5
Simplify.
Step 4.3.19.2
Expand using the FOIL Method.
Step 4.3.19.2.1
Apply the distributive property.
Step 4.3.19.2.2
Apply the distributive property.
Step 4.3.19.2.3
Apply the distributive property.
Step 4.3.19.3
Simplify and combine like terms.
Step 4.3.19.3.1
Simplify each term.
Step 4.3.19.3.1.1
Multiply by .
Step 4.3.19.3.1.2
Multiply by .
Step 4.3.19.3.1.3
Multiply by .
Step 4.3.19.3.1.4
Rewrite using the commutative property of multiplication.
Step 4.3.19.3.1.5
Multiply by by adding the exponents.
Step 4.3.19.3.1.5.1
Move .
Step 4.3.19.3.1.5.2
Multiply by .
Step 4.3.19.3.2
Add and .
Step 4.3.19.3.3
Add and .
Step 4.3.19.4
Rewrite as .
Step 4.3.19.5
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 4.3.20
Reduce the expression by cancelling the common factors.
Step 4.3.20.1
Cancel the common factor.
Step 4.3.20.2
Rewrite the expression.
Step 4.3.20.3
Cancel the common factor.
Step 4.3.20.4
Divide by .
Step 4.4
Since and , then is the inverse of .