Enter a problem...
Trigonometry Examples
cot(arctan(√2x))cot(arctan(√2x))
Step 1
Interchange the variables.
x=cot(arctan(√2y))x=cot(arctan(√2y))
Step 2
Step 2.1
Rewrite the equation as cot(arctan(√2y))=xcot(arctan(√2y))=x.
cot(arctan(√2y))=xcot(arctan(√2y))=x
Step 2.2
Take the inverse cotangent of both sides of the equation to extract arctan(√2y)arctan(√2y) from inside the cotangent.
arctan(√2y)=arccot(x)arctan(√2y)=arccot(x)
Step 2.3
Take the inverse arctangent of both sides of the equation to extract yy from inside the arctangent.
√2y=tan(arccot(x))√2y=tan(arccot(x))
Step 2.4
Simplify the left side.
Step 2.4.1
Simplify √2y√2y.
Step 2.4.1.1
Rewrite √2y√2y as √2√y√2√y.
√2√y=tan(arccot(x))√2√y=tan(arccot(x))
Step 2.4.1.2
Multiply √2√y√2√y by √y√y√y√y.
√2√y⋅√y√y=tan(arccot(x))√2√y⋅√y√y=tan(arccot(x))
Step 2.4.1.3
Combine and simplify the denominator.
Step 2.4.1.3.1
Multiply √2√y√2√y by √y√y√y√y.
√2√y√y√y=tan(arccot(x))√2√y√y√y=tan(arccot(x))
Step 2.4.1.3.2
Raise √y√y to the power of 11.
√2√y√y1√y=tan(arccot(x))√2√y√y1√y=tan(arccot(x))
Step 2.4.1.3.3
Raise √y√y to the power of 11.
√2√y√y1√y1=tan(arccot(x))√2√y√y1√y1=tan(arccot(x))
Step 2.4.1.3.4
Use the power rule aman=am+naman=am+n to combine exponents.
√2√y√y1+1=tan(arccot(x))√2√y√y1+1=tan(arccot(x))
Step 2.4.1.3.5
Add 11 and 11.
√2√y√y2=tan(arccot(x))√2√y√y2=tan(arccot(x))
Step 2.4.1.3.6
Rewrite √y2√y2 as yy.
Step 2.4.1.3.6.1
Use n√ax=axnn√ax=axn to rewrite √y√y as y12y12.
√2√y(y12)2=tan(arccot(x))√2√y(y12)2=tan(arccot(x))
Step 2.4.1.3.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
√2√yy12⋅2=tan(arccot(x))√2√yy12⋅2=tan(arccot(x))
Step 2.4.1.3.6.3
Combine 1212 and 22.
√2√yy22=tan(arccot(x))√2√yy22=tan(arccot(x))
Step 2.4.1.3.6.4
Cancel the common factor of 22.
Step 2.4.1.3.6.4.1
Cancel the common factor.
√2√yy22=tan(arccot(x))
Step 2.4.1.3.6.4.2
Rewrite the expression.
√2√yy1=tan(arccot(x))
√2√yy1=tan(arccot(x))
Step 2.4.1.3.6.5
Simplify.
√2√yy=tan(arccot(x))
√2√yy=tan(arccot(x))
√2√yy=tan(arccot(x))
Step 2.4.1.4
Combine using the product rule for radicals.
√2yy=tan(arccot(x))
√2yy=tan(arccot(x))
√2yy=tan(arccot(x))
Step 2.5
Simplify the right side.
Step 2.5.1
Draw a triangle in the plane with vertices (x,1), (x,0), and the origin. Then arccot(x) is the angle between the positive x-axis and the ray beginning at the origin and passing through (x,1). Therefore, tan(arccot(x)) is 1x.
√2yy=1x
√2yy=1x
Step 2.6
Cross multiply.
Step 2.6.1
Cross multiply by setting the product of the numerator of the right side and the denominator of the left side equal to the product of the numerator of the left side and the denominator of the right side.
1⋅(y)=√2y⋅(x)
Step 2.6.2
Simplify the left side.
Step 2.6.2.1
Multiply y by 1.
y=√2y⋅(x)
y=√2y⋅(x)
Step 2.6.3
Simplify the right side.
Step 2.6.3.1
Multiply √2y by x.
y=√2yx
y=√2yx
y=√2yx
Step 2.7
Rewrite the equation as √2yx=y.
√2yx=y
Step 2.8
To remove the radical on the left side of the equation, square both sides of the equation.
(√2yx)2=y2
Step 2.9
Simplify each side of the equation.
Step 2.9.1
Use n√ax=axn to rewrite √2y as (2y)12.
((2y)12x)2=y2
Step 2.9.2
Simplify the left side.
Step 2.9.2.1
Simplify ((2y)12x)2.
Step 2.9.2.1.1
Apply the product rule to 2y.
(212y12x)2=y2
Step 2.9.2.1.2
Use the power rule (ab)n=anbn to distribute the exponent.
Step 2.9.2.1.2.1
Apply the product rule to 212y12x.
(212y12)2x2=y2
Step 2.9.2.1.2.2
Apply the product rule to 212y12.
(212)2(y12)2x2=y2
(212)2(y12)2x2=y2
Step 2.9.2.1.3
Multiply the exponents in (212)2.
Step 2.9.2.1.3.1
Apply the power rule and multiply exponents, (am)n=amn.
212⋅2(y12)2x2=y2
Step 2.9.2.1.3.2
Cancel the common factor of 2.
Step 2.9.2.1.3.2.1
Cancel the common factor.
212⋅2(y12)2x2=y2
Step 2.9.2.1.3.2.2
Rewrite the expression.
21(y12)2x2=y2
21(y12)2x2=y2
21(y12)2x2=y2
Step 2.9.2.1.4
Evaluate the exponent.
2(y12)2x2=y2
Step 2.9.2.1.5
Multiply the exponents in (y12)2.
Step 2.9.2.1.5.1
Apply the power rule and multiply exponents, (am)n=amn.
2y12⋅2x2=y2
Step 2.9.2.1.5.2
Cancel the common factor of 2.
Step 2.9.2.1.5.2.1
Cancel the common factor.
2y12⋅2x2=y2
Step 2.9.2.1.5.2.2
Rewrite the expression.
2y1x2=y2
2y1x2=y2
2y1x2=y2
Step 2.9.2.1.6
Simplify.
2yx2=y2
2yx2=y2
2yx2=y2
2yx2=y2
Step 2.10
Solve for y.
Step 2.10.1
Subtract y2 from both sides of the equation.
2yx2-y2=0
Step 2.10.2
Factor y out of 2yx2-y2.
Step 2.10.2.1
Factor y out of 2yx2.
y(2x2)-y2=0
Step 2.10.2.2
Factor y out of -y2.
y(2x2)+y(-y)=0
Step 2.10.2.3
Factor y out of y(2x2)+y(-y).
y(2x2-y)=0
y(2x2-y)=0
Step 2.10.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
y=0
2x2-y=0
Step 2.10.4
Set y equal to 0.
y=0
Step 2.10.5
Set 2x2-y equal to 0 and solve for y.
Step 2.10.5.1
Set 2x2-y equal to 0.
2x2-y=0
Step 2.10.5.2
Solve 2x2-y=0 for y.
Step 2.10.5.2.1
Subtract 2x2 from both sides of the equation.
-y=-2x2
Step 2.10.5.2.2
Divide each term in -y=-2x2 by -1 and simplify.
Step 2.10.5.2.2.1
Divide each term in -y=-2x2 by -1.
-y-1=-2x2-1
Step 2.10.5.2.2.2
Simplify the left side.
Step 2.10.5.2.2.2.1
Dividing two negative values results in a positive value.
y1=-2x2-1
Step 2.10.5.2.2.2.2
Divide y by 1.
y=-2x2-1
y=-2x2-1
Step 2.10.5.2.2.3
Simplify the right side.
Step 2.10.5.2.2.3.1
Move the negative one from the denominator of -2x2-1.
y=-1⋅(-2x2)
Step 2.10.5.2.2.3.2
Rewrite -1⋅(-2x2) as -(-2x2).
y=-(-2x2)
Step 2.10.5.2.2.3.3
Multiply -2 by -1.
y=2x2
y=2x2
y=2x2
y=2x2
y=2x2
Step 2.10.6
The final solution is all the values that make y(2x2-y)=0 true.
y=0
y=2x2
y=0
y=2x2
y=0
y=2x2
Step 3
Replace y with f-1(x) to show the final answer.
f-1(x)=0,2x2
Step 4
Step 4.1
The domain of the inverse is the range of the original function and vice versa. Find the domain and the range of f(x)=cot(arctan(√2x)) and f-1(x)=0,2x2 and compare them.
Step 4.2
Find the domain of 0.
Step 4.2.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
(-∞,∞)
(-∞,∞)
Step 4.3
Since the domain of f-1(x)=0,2x2 is not equal to the range of f(x)=cot(arctan(√2x)), then f-1(x)=0,2x2 is not an inverse of f(x)=cot(arctan(√2x)).
There is no inverse
There is no inverse
Step 5