Enter a problem...
Trigonometry Examples
y=arcsin(x+34)
Step 1
Interchange the variables.
x=arcsin(y+34)
Step 2
Step 2.1
Rewrite the equation as arcsin(y+34)=x.
arcsin(y+34)=x
Step 2.2
Take the inverse arcsine of both sides of the equation to extract y from inside the arcsine.
y+34=sin(x)
Step 2.3
Simplify the left side.
Step 2.3.1
Split the fraction y+34 into two fractions.
y4+34=sin(x)
y4+34=sin(x)
Step 2.4
Subtract 34 from both sides of the equation.
y4=sin(x)-34
Step 2.5
Multiply both sides of the equation by 4.
4y4=4(sin(x)-34)
Step 2.6
Simplify both sides of the equation.
Step 2.6.1
Simplify the left side.
Step 2.6.1.1
Cancel the common factor of 4.
Step 2.6.1.1.1
Cancel the common factor.
4y4=4(sin(x)-34)
Step 2.6.1.1.2
Rewrite the expression.
y=4(sin(x)-34)
y=4(sin(x)-34)
y=4(sin(x)-34)
Step 2.6.2
Simplify the right side.
Step 2.6.2.1
Simplify 4(sin(x)-34).
Step 2.6.2.1.1
Apply the distributive property.
y=4sin(x)+4(-34)
Step 2.6.2.1.2
Cancel the common factor of 4.
Step 2.6.2.1.2.1
Move the leading negative in -34 into the numerator.
y=4sin(x)+4(-34)
Step 2.6.2.1.2.2
Cancel the common factor.
y=4sin(x)+4(-34)
Step 2.6.2.1.2.3
Rewrite the expression.
y=4sin(x)-3
y=4sin(x)-3
y=4sin(x)-3
y=4sin(x)-3
y=4sin(x)-3
Step 2.7
Subtract 34 from both sides of the equation.
y4=sin(x)-34
Step 2.8
Multiply both sides of the equation by 4.
4y4=4(sin(x)-34)
Step 2.9
Simplify both sides of the equation.
Step 2.9.1
Simplify the left side.
Step 2.9.1.1
Cancel the common factor of 4.
Step 2.9.1.1.1
Cancel the common factor.
4y4=4(sin(x)-34)
Step 2.9.1.1.2
Rewrite the expression.
y=4(sin(x)-34)
y=4(sin(x)-34)
y=4(sin(x)-34)
Step 2.9.2
Simplify the right side.
Step 2.9.2.1
Simplify 4(sin(x)-34).
Step 2.9.2.1.1
Apply the distributive property.
y=4sin(x)+4(-34)
Step 2.9.2.1.2
Cancel the common factor of 4.
Step 2.9.2.1.2.1
Move the leading negative in -34 into the numerator.
y=4sin(x)+4(-34)
Step 2.9.2.1.2.2
Cancel the common factor.
y=4sin(x)+4(-34)
Step 2.9.2.1.2.3
Rewrite the expression.
y=4sin(x)-3
y=4sin(x)-3
y=4sin(x)-3
y=4sin(x)-3
y=4sin(x)-3
y=4sin(x)-3
Step 3
Replace y with f-1(x) to show the final answer.
f-1(x)=4sin(x)-3
Step 4
Step 4.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 4.2
Evaluate f-1(f(x)).
Step 4.2.1
Set up the composite result function.
f-1(f(x))
Step 4.2.2
Evaluate f-1(arcsin(x+34)) by substituting in the value of f into f-1.
f-1(arcsin(x+34))=4sin(arcsin(x+34))-3
Step 4.2.3
Simplify each term.
Step 4.2.3.1
The functions sine and arcsine are inverses.
f-1(arcsin(x+34))=4(x+34)-3
Step 4.2.3.2
Cancel the common factor of 4.
Step 4.2.3.2.1
Cancel the common factor.
f-1(arcsin(x+34))=4(x+34)-3
Step 4.2.3.2.2
Rewrite the expression.
f-1(arcsin(x+34))=x+3-3
f-1(arcsin(x+34))=x+3-3
f-1(arcsin(x+34))=x+3-3
Step 4.2.4
Combine the opposite terms in x+3-3.
Step 4.2.4.1
Subtract 3 from 3.
f-1(arcsin(x+34))=x+0
Step 4.2.4.2
Add x and 0.
f-1(arcsin(x+34))=x
f-1(arcsin(x+34))=x
f-1(arcsin(x+34))=x
Step 4.3
Evaluate f(f-1(x)).
Step 4.3.1
Set up the composite result function.
f(f-1(x))
Step 4.3.2
Evaluate f(4sin(x)-3) by substituting in the value of f-1 into f.
f(4sin(x)-3)=arcsin((4sin(x)-3)+34)
Step 4.3.3
Simplify the numerator.
Step 4.3.3.1
Add -3 and 3.
f(4sin(x)-3)=arcsin(4sin(x)+04)
Step 4.3.3.2
Add 4sin(x) and 0.
f(4sin(x)-3)=arcsin(4sin(x)4)
f(4sin(x)-3)=arcsin(4sin(x)4)
Step 4.3.4
Cancel the common factor of 4.
Step 4.3.4.1
Cancel the common factor.
f(4sin(x)-3)=arcsin(4sin(x)4)
Step 4.3.4.2
Divide sin(x) by 1.
f(4sin(x)-3)=arcsin(sin(x))
f(4sin(x)-3)=arcsin(sin(x))
f(4sin(x)-3)=arcsin(sin(x))
Step 4.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=4sin(x)-3 is the inverse of f(x)=arcsin(x+34).
f-1(x)=4sin(x)-3
f-1(x)=4sin(x)-3