Enter a problem...
Trigonometry Examples
Step 1
Convert the inequality to an equality.
Step 2
Step 2.1
For the equation to be equal, the argument of the logarithms on both sides of the equation must be equal.
Step 2.2
Solve for .
Step 2.2.1
Move all terms containing to the left side of the equation.
Step 2.2.1.1
Add to both sides of the equation.
Step 2.2.1.2
Add and .
Step 2.2.2
Move all terms not containing to the right side of the equation.
Step 2.2.2.1
Subtract from both sides of the equation.
Step 2.2.2.2
Subtract from .
Step 2.2.3
Divide each term in by and simplify.
Step 2.2.3.1
Divide each term in by .
Step 2.2.3.2
Simplify the left side.
Step 2.2.3.2.1
Cancel the common factor of .
Step 2.2.3.2.1.1
Cancel the common factor.
Step 2.2.3.2.1.2
Divide by .
Step 3
Step 3.1
Set the argument in greater than to find where the expression is defined.
Step 3.2
Solve for .
Step 3.2.1
Find all the values where the expression switches from negative to positive by setting each factor equal to and solving.
Step 3.2.2
Subtract from both sides of the equation.
Step 3.2.3
Subtract from both sides of the equation.
Step 3.2.4
Divide each term in by and simplify.
Step 3.2.4.1
Divide each term in by .
Step 3.2.4.2
Simplify the left side.
Step 3.2.4.2.1
Dividing two negative values results in a positive value.
Step 3.2.4.2.2
Divide by .
Step 3.2.4.3
Simplify the right side.
Step 3.2.4.3.1
Divide by .
Step 3.2.5
Solve for each factor to find the values where the absolute value expression goes from negative to positive.
Step 3.2.6
Consolidate the solutions.
Step 3.2.7
Find the domain of .
Step 3.2.7.1
Set the denominator in equal to to find where the expression is undefined.
Step 3.2.7.2
Solve for .
Step 3.2.7.2.1
Divide each term in by and simplify.
Step 3.2.7.2.1.1
Divide each term in by .
Step 3.2.7.2.1.2
Simplify the left side.
Step 3.2.7.2.1.2.1
Cancel the common factor of .
Step 3.2.7.2.1.2.1.1
Cancel the common factor.
Step 3.2.7.2.1.2.1.2
Divide by .
Step 3.2.7.2.1.3
Simplify the right side.
Step 3.2.7.2.1.3.1
Divide by .
Step 3.2.7.2.2
Subtract from both sides of the equation.
Step 3.2.7.2.3
Divide each term in by and simplify.
Step 3.2.7.2.3.1
Divide each term in by .
Step 3.2.7.2.3.2
Simplify the left side.
Step 3.2.7.2.3.2.1
Dividing two negative values results in a positive value.
Step 3.2.7.2.3.2.2
Divide by .
Step 3.2.7.2.3.3
Simplify the right side.
Step 3.2.7.2.3.3.1
Divide by .
Step 3.2.7.3
The domain is all values of that make the expression defined.
Step 3.2.8
Use each root to create test intervals.
Step 3.2.9
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Step 3.2.9.1
Test a value on the interval to see if it makes the inequality true.
Step 3.2.9.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 3.2.9.1.2
Replace with in the original inequality.
Step 3.2.9.1.3
The left side is not greater than the right side , which means that the given statement is false.
False
False
Step 3.2.9.2
Test a value on the interval to see if it makes the inequality true.
Step 3.2.9.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 3.2.9.2.2
Replace with in the original inequality.
Step 3.2.9.2.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 3.2.9.3
Test a value on the interval to see if it makes the inequality true.
Step 3.2.9.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 3.2.9.3.2
Replace with in the original inequality.
Step 3.2.9.3.3
The left side is not greater than the right side , which means that the given statement is false.
False
False
Step 3.2.9.4
Compare the intervals to determine which ones satisfy the original inequality.
False
True
False
False
True
False
Step 3.2.10
The solution consists of all of the true intervals.
Step 3.3
Set the denominator in equal to to find where the expression is undefined.
Step 3.4
Solve for .
Step 3.4.1
Divide each term in by and simplify.
Step 3.4.1.1
Divide each term in by .
Step 3.4.1.2
Simplify the left side.
Step 3.4.1.2.1
Cancel the common factor of .
Step 3.4.1.2.1.1
Cancel the common factor.
Step 3.4.1.2.1.2
Divide by .
Step 3.4.1.3
Simplify the right side.
Step 3.4.1.3.1
Divide by .
Step 3.4.2
Subtract from both sides of the equation.
Step 3.4.3
Divide each term in by and simplify.
Step 3.4.3.1
Divide each term in by .
Step 3.4.3.2
Simplify the left side.
Step 3.4.3.2.1
Dividing two negative values results in a positive value.
Step 3.4.3.2.2
Divide by .
Step 3.4.3.3
Simplify the right side.
Step 3.4.3.3.1
Divide by .
Step 3.5
The domain is all values of that make the expression defined.
Step 4
Use each root to create test intervals.
Step 5
Step 5.1
Test a value on the interval to see if it makes the inequality true.
Step 5.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 5.1.2
Replace with in the original inequality.
Step 5.1.3
Determine if the inequality is true.
Step 5.1.3.1
The equation cannot be solved because it is undefined.
Step 5.1.3.2
The left side has no solution, which means that the given statement is false.
False
False
False
Step 5.2
Test a value on the interval to see if it makes the inequality true.
Step 5.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 5.2.2
Replace with in the original inequality.
Step 5.2.3
The left side is less than the right side , which means that the given statement is always true.
True
True
Step 5.3
Test a value on the interval to see if it makes the inequality true.
Step 5.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 5.3.2
Replace with in the original inequality.
Step 5.3.3
The left side is not less than the right side , which means that the given statement is false.
False
False
Step 5.4
Test a value on the interval to see if it makes the inequality true.
Step 5.4.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 5.4.2
Replace with in the original inequality.
Step 5.4.3
Determine if the inequality is true.
Step 5.4.3.1
The equation cannot be solved because it is undefined.
Step 5.4.3.2
The right side has no solution, which means that the given statement is false.
False
False
False
Step 5.5
Compare the intervals to determine which ones satisfy the original inequality.
False
True
False
False
False
True
False
False
Step 6
The solution consists of all of the true intervals.
Step 7
The result can be shown in multiple forms.
Inequality Form:
Interval Notation:
Step 8