Trigonometry Examples

Solve for x ( square root of 2- square root of 2i)/2=(( square root of 2)/(1-i))^x
2-2i2=(21-i)x
Step 1
Rewrite the equation as (21-i)x=2-2i2.
(21-i)x=2-2i2
Step 2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln((21-i)x)=ln(2-2i2)
Step 3
Expand the left side.
Tap for more steps...
Step 3.1
Use axn=axn to rewrite 2 as 212.
ln((2121-i)x)=ln(2-2i2)
Step 3.2
Expand ln((2121-i)x) by moving x outside the logarithm.
xln(2121-i)=ln(2-2i2)
Step 3.3
Multiply the numerator and denominator of 2121-i by the conjugate of 1-i to make the denominator real.
xln(2121-i1+i1+i)=ln(2-2i2)
Step 3.4
Multiply.
Tap for more steps...
Step 3.4.1
Combine.
xln(212(1+i)(1-i)(1+i))=ln(2-2i2)
Step 3.4.2
Simplify the numerator.
Tap for more steps...
Step 3.4.2.1
Apply the distributive property.
xln(2121+212i(1-i)(1+i))=ln(2-2i2)
Step 3.4.2.2
Multiply 212 by 1.
xln(212+212i(1-i)(1+i))=ln(2-2i2)
Step 3.4.2.3
Reorder factors in 212+212i.
xln(212+i212(1-i)(1+i))=ln(2-2i2)
xln(212+i212(1-i)(1+i))=ln(2-2i2)
Step 3.4.3
Simplify the denominator.
Tap for more steps...
Step 3.4.3.1
Expand (1-i)(1+i) using the FOIL Method.
Tap for more steps...
Step 3.4.3.1.1
Apply the distributive property.
xln(212+i2121(1+i)-i(1+i))=ln(2-2i2)
Step 3.4.3.1.2
Apply the distributive property.
xln(212+i21211+1i-i(1+i))=ln(2-2i2)
Step 3.4.3.1.3
Apply the distributive property.
xln(212+i21211+1i-i1-ii)=ln(2-2i2)
xln(212+i21211+1i-i1-ii)=ln(2-2i2)
Step 3.4.3.2
Simplify.
Tap for more steps...
Step 3.4.3.2.1
Multiply 1 by 1.
xln(212+i2121+1i-i1-ii)=ln(2-2i2)
Step 3.4.3.2.2
Multiply -1 by 1.
xln(212+i2121+1i-i-ii)=ln(2-2i2)
Step 3.4.3.2.3
Raise i to the power of 1.
xln(212+i2121+1i-i-(i1i))=ln(2-2i2)
Step 3.4.3.2.4
Raise i to the power of 1.
xln(212+i2121+1i-i-(i1i1))=ln(2-2i2)
Step 3.4.3.2.5
Use the power rule aman=am+n to combine exponents.
xln(212+i2121+1i-i-i1+1)=ln(2-2i2)
Step 3.4.3.2.6
Add 1 and 1.
xln(212+i2121+1i-i-i2)=ln(2-2i2)
Step 3.4.3.2.7
Subtract i from 1i.
xln(212+i2121+0-i2)=ln(2-2i2)
Step 3.4.3.2.8
Add 1 and 0.
xln(212+i2121-i2)=ln(2-2i2)
xln(212+i2121-i2)=ln(2-2i2)
Step 3.4.3.3
Simplify each term.
Tap for more steps...
Step 3.4.3.3.1
Rewrite i2 as -1.
xln(212+i2121--1)=ln(2-2i2)
Step 3.4.3.3.2
Multiply -1 by -1.
xln(212+i2121+1)=ln(2-2i2)
xln(212+i2121+1)=ln(2-2i2)
Step 3.4.3.4
Add 1 and 1.
xln(212+i2122)=ln(2-2i2)
xln(212+i2122)=ln(2-2i2)
xln(212+i2122)=ln(2-2i2)
Step 3.5
Rewrite ln(212+i2122) as ln(212+i212)-ln(2).
x(ln(212+i212)-ln(2))=ln(2-2i2)
x(ln(212+i212)-ln(2))=ln(2-2i2)
Step 4
Expand the right side.
Tap for more steps...
Step 4.1
Rewrite ln(2-2i2) as ln(2-2i)-ln(2).
x(ln(212+i212)-ln(2))=ln(2-2i)-ln(2)
Step 4.2
Use axn=axn to rewrite 2 as 212.
x(ln(212+i212)-ln(2))=ln(212-2i)-ln(2)
Step 4.3
Use axn=axn to rewrite 2 as 212.
x(ln(212+i212)-ln(2))=ln(212-212i)-ln(2)
x(ln(212+i212)-ln(2))=ln(212-212i)-ln(2)
Step 5
Simplify the left side.
Tap for more steps...
Step 5.1
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
xln(212+i2122)=ln(212-212i)-ln(2)
xln(212+i2122)=ln(212-212i)-ln(2)
Step 6
Simplify the right side.
Tap for more steps...
Step 6.1
Simplify ln(212-212i)-ln(2).
Tap for more steps...
Step 6.1.1
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
xln(212+i2122)=ln(212-212i2)
Step 6.1.2
Reorder factors in ln(212-212i2).
xln(212+i2122)=ln(212-i2122)
xln(212+i2122)=ln(212-i2122)
xln(212+i2122)=ln(212-i2122)
Step 7
Divide each term in xln(212+i2122)=ln(212-i2122) by ln(212+i2122) and simplify.
Tap for more steps...
Step 7.1
Divide each term in xln(212+i2122)=ln(212-i2122) by ln(212+i2122).
xln(212+i2122)ln(212+i2122)=ln(212-i2122)ln(212+i2122)
Step 7.2
Simplify the left side.
Tap for more steps...
Step 7.2.1
Cancel the common factor of ln(212+i2122).
Tap for more steps...
Step 7.2.1.1
Cancel the common factor.
xln(212+i2122)ln(212+i2122)=ln(212-i2122)ln(212+i2122)
Step 7.2.1.2
Divide x by 1.
x=ln(212-i2122)ln(212+i2122)
x=ln(212-i2122)ln(212+i2122)
x=ln(212-i2122)ln(212+i2122)
x=ln(212-i2122)ln(212+i2122)
 [x2  12  π  xdx ]