Trigonometry Examples

Solve for x 3^(x^(2-12))=9^(2x)
3x2-12=92x3x212=92x
Step 1
Create equivalent expressions in the equation that all have equal bases.
3x2-12=32(2x)3x212=32(2x)
Step 2
Since the bases are the same, then two expressions are only equal if the exponents are also equal.
x2-12=2(2x)x212=2(2x)
Step 3
Solve for xx.
Tap for more steps...
Step 3.1
Simplify x2-12x212.
Tap for more steps...
Step 3.1.1
Rewrite.
0+0+x2-12=2(2x)0+0+x212=2(2x)
Step 3.1.2
Simplify by adding zeros.
x2-12=2(2x)x212=2(2x)
Step 3.1.3
Subtract 1212 from 22.
x-10=2(2x)x10=2(2x)
Step 3.1.4
Rewrite the expression using the negative exponent rule b-n=1bnbn=1bn.
1x10=2(2x)1x10=2(2x)
1x10=2(2x)1x10=2(2x)
Step 3.2
Multiply 22 by 22.
1x10=4x1x10=4x
Step 3.3
Subtract 4x4x from both sides of the equation.
1x10-4x=01x104x=0
Step 3.4
Find the LCD of the terms in the equation.
Tap for more steps...
Step 3.4.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
x10,1,1x10,1,1
Step 3.4.2
The LCM of one and any expression is the expression.
x10x10
x10x10
Step 3.5
Multiply each term in 1x10-4x=01x104x=0 by x10x10 to eliminate the fractions.
Tap for more steps...
Step 3.5.1
Multiply each term in 1x10-4x=01x104x=0 by x10x10.
1x10x10-4xx10=0x101x10x104xx10=0x10
Step 3.5.2
Simplify the left side.
Tap for more steps...
Step 3.5.2.1
Simplify each term.
Tap for more steps...
Step 3.5.2.1.1
Cancel the common factor of x10x10.
Tap for more steps...
Step 3.5.2.1.1.1
Cancel the common factor.
1x10x10-4xx10=0x10
Step 3.5.2.1.1.2
Rewrite the expression.
1-4xx10=0x10
1-4xx10=0x10
Step 3.5.2.1.2
Multiply x by x10 by adding the exponents.
Tap for more steps...
Step 3.5.2.1.2.1
Move x10.
1-4(x10x)=0x10
Step 3.5.2.1.2.2
Multiply x10 by x.
Tap for more steps...
Step 3.5.2.1.2.2.1
Raise x to the power of 1.
1-4(x10x1)=0x10
Step 3.5.2.1.2.2.2
Use the power rule aman=am+n to combine exponents.
1-4x10+1=0x10
1-4x10+1=0x10
Step 3.5.2.1.2.3
Add 10 and 1.
1-4x11=0x10
1-4x11=0x10
1-4x11=0x10
1-4x11=0x10
Step 3.5.3
Simplify the right side.
Tap for more steps...
Step 3.5.3.1
Multiply 0 by x10.
1-4x11=0
1-4x11=0
1-4x11=0
Step 3.6
Solve the equation.
Tap for more steps...
Step 3.6.1
Subtract 1 from both sides of the equation.
-4x11=-1
Step 3.6.2
Divide each term in -4x11=-1 by -4 and simplify.
Tap for more steps...
Step 3.6.2.1
Divide each term in -4x11=-1 by -4.
-4x11-4=-1-4
Step 3.6.2.2
Simplify the left side.
Tap for more steps...
Step 3.6.2.2.1
Cancel the common factor of -4.
Tap for more steps...
Step 3.6.2.2.1.1
Cancel the common factor.
-4x11-4=-1-4
Step 3.6.2.2.1.2
Divide x11 by 1.
x11=-1-4
x11=-1-4
x11=-1-4
Step 3.6.2.3
Simplify the right side.
Tap for more steps...
Step 3.6.2.3.1
Dividing two negative values results in a positive value.
x11=14
x11=14
x11=14
Step 3.6.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=1114
Step 3.6.4
Simplify 1114.
Tap for more steps...
Step 3.6.4.1
Rewrite 1114 as 111114.
x=111114
Step 3.6.4.2
Any root of 1 is 1.
x=1114
x=1114
x=1114
x=1114
Step 4
The result can be shown in multiple forms.
Exact Form:
x=1114
Decimal Form:
x=0.88159125
 [x2  12  π  xdx ]