Enter a problem...
Trigonometry Examples
3x2-12=92x3x2−12=92x
Step 1
Create equivalent expressions in the equation that all have equal bases.
3x2-12=32(2x)3x2−12=32(2x)
Step 2
Since the bases are the same, then two expressions are only equal if the exponents are also equal.
x2-12=2(2x)x2−12=2(2x)
Step 3
Step 3.1
Simplify x2-12x2−12.
Step 3.1.1
Rewrite.
0+0+x2-12=2⋅(2x)0+0+x2−12=2⋅(2x)
Step 3.1.2
Simplify by adding zeros.
x2-12=2⋅(2x)x2−12=2⋅(2x)
Step 3.1.3
Subtract 1212 from 22.
x-10=2⋅(2x)x−10=2⋅(2x)
Step 3.1.4
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
1x10=2⋅(2x)1x10=2⋅(2x)
1x10=2⋅(2x)1x10=2⋅(2x)
Step 3.2
Multiply 22 by 22.
1x10=4x1x10=4x
Step 3.3
Subtract 4x4x from both sides of the equation.
1x10-4x=01x10−4x=0
Step 3.4
Find the LCD of the terms in the equation.
Step 3.4.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
x10,1,1x10,1,1
Step 3.4.2
The LCM of one and any expression is the expression.
x10x10
x10x10
Step 3.5
Multiply each term in 1x10-4x=01x10−4x=0 by x10x10 to eliminate the fractions.
Step 3.5.1
Multiply each term in 1x10-4x=01x10−4x=0 by x10x10.
1x10x10-4x⋅x10=0x101x10x10−4x⋅x10=0x10
Step 3.5.2
Simplify the left side.
Step 3.5.2.1
Simplify each term.
Step 3.5.2.1.1
Cancel the common factor of x10x10.
Step 3.5.2.1.1.1
Cancel the common factor.
1x10x10-4x⋅x10=0x10
Step 3.5.2.1.1.2
Rewrite the expression.
1-4x⋅x10=0x10
1-4x⋅x10=0x10
Step 3.5.2.1.2
Multiply x by x10 by adding the exponents.
Step 3.5.2.1.2.1
Move x10.
1-4(x10x)=0x10
Step 3.5.2.1.2.2
Multiply x10 by x.
Step 3.5.2.1.2.2.1
Raise x to the power of 1.
1-4(x10x1)=0x10
Step 3.5.2.1.2.2.2
Use the power rule aman=am+n to combine exponents.
1-4x10+1=0x10
1-4x10+1=0x10
Step 3.5.2.1.2.3
Add 10 and 1.
1-4x11=0x10
1-4x11=0x10
1-4x11=0x10
1-4x11=0x10
Step 3.5.3
Simplify the right side.
Step 3.5.3.1
Multiply 0 by x10.
1-4x11=0
1-4x11=0
1-4x11=0
Step 3.6
Solve the equation.
Step 3.6.1
Subtract 1 from both sides of the equation.
-4x11=-1
Step 3.6.2
Divide each term in -4x11=-1 by -4 and simplify.
Step 3.6.2.1
Divide each term in -4x11=-1 by -4.
-4x11-4=-1-4
Step 3.6.2.2
Simplify the left side.
Step 3.6.2.2.1
Cancel the common factor of -4.
Step 3.6.2.2.1.1
Cancel the common factor.
-4x11-4=-1-4
Step 3.6.2.2.1.2
Divide x11 by 1.
x11=-1-4
x11=-1-4
x11=-1-4
Step 3.6.2.3
Simplify the right side.
Step 3.6.2.3.1
Dividing two negative values results in a positive value.
x11=14
x11=14
x11=14
Step 3.6.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=11√14
Step 3.6.4
Simplify 11√14.
Step 3.6.4.1
Rewrite 11√14 as 11√111√4.
x=11√111√4
Step 3.6.4.2
Any root of 1 is 1.
x=111√4
x=111√4
x=111√4
x=111√4
Step 4
The result can be shown in multiple forms.
Exact Form:
x=111√4
Decimal Form:
x=0.88159125…