Enter a problem...
Trigonometry Examples
Step 1
Step 1.1
For any , vertical asymptotes occur at , where is an integer. Use the basic period for , , to find the vertical asymptotes for . Set the inside of the secant function, , for equal to to find where the vertical asymptote occurs for .
Step 1.2
Solve for .
Step 1.2.1
Move all terms not containing to the right side of the equation.
Step 1.2.1.1
Add to both sides of the equation.
Step 1.2.1.2
Combine the numerators over the common denominator.
Step 1.2.1.3
Add and .
Step 1.2.1.4
Divide by .
Step 1.2.2
Divide each term in by and simplify.
Step 1.2.2.1
Divide each term in by .
Step 1.2.2.2
Simplify the left side.
Step 1.2.2.2.1
Cancel the common factor of .
Step 1.2.2.2.1.1
Cancel the common factor.
Step 1.2.2.2.1.2
Divide by .
Step 1.2.2.3
Simplify the right side.
Step 1.2.2.3.1
Divide by .
Step 1.3
Set the inside of the secant function equal to .
Step 1.4
Solve for .
Step 1.4.1
Move all terms not containing to the right side of the equation.
Step 1.4.1.1
Add to both sides of the equation.
Step 1.4.1.2
Combine the numerators over the common denominator.
Step 1.4.1.3
Add and .
Step 1.4.1.4
Cancel the common factor of and .
Step 1.4.1.4.1
Factor out of .
Step 1.4.1.4.2
Cancel the common factors.
Step 1.4.1.4.2.1
Factor out of .
Step 1.4.1.4.2.2
Cancel the common factor.
Step 1.4.1.4.2.3
Rewrite the expression.
Step 1.4.1.4.2.4
Divide by .
Step 1.4.2
Divide each term in by and simplify.
Step 1.4.2.1
Divide each term in by .
Step 1.4.2.2
Simplify the left side.
Step 1.4.2.2.1
Cancel the common factor of .
Step 1.4.2.2.1.1
Cancel the common factor.
Step 1.4.2.2.1.2
Divide by .
Step 1.4.2.3
Simplify the right side.
Step 1.4.2.3.1
Cancel the common factor of .
Step 1.4.2.3.1.1
Cancel the common factor.
Step 1.4.2.3.1.2
Divide by .
Step 1.5
The basic period for will occur at , where and are vertical asymptotes.
Step 1.6
Find the period to find where the vertical asymptotes exist. Vertical asymptotes occur every half period.
Step 1.6.1
The absolute value is the distance between a number and zero. The distance between and is .
Step 1.6.2
Cancel the common factor of .
Step 1.6.2.1
Cancel the common factor.
Step 1.6.2.2
Divide by .
Step 1.7
The vertical asymptotes for occur at , , and every , where is an integer. This is half of the period.
Step 1.8
Secant only has vertical asymptotes.
No Horizontal Asymptotes
No Oblique Asymptotes
Vertical Asymptotes: where is an integer
No Horizontal Asymptotes
No Oblique Asymptotes
Vertical Asymptotes: where is an integer
Step 2
Use the form to find the variables used to find the amplitude, period, phase shift, and vertical shift.
Step 3
Since the graph of the function does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Step 4
Step 4.1
The period of the function can be calculated using .
Step 4.2
Replace with in the formula for period.
Step 4.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 4.4
Cancel the common factor of .
Step 4.4.1
Cancel the common factor.
Step 4.4.2
Divide by .
Step 5
Step 5.1
The phase shift of the function can be calculated from .
Phase Shift:
Step 5.2
Replace the values of and in the equation for phase shift.
Phase Shift:
Step 5.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift:
Step 5.4
Multiply .
Step 5.4.1
Multiply by .
Phase Shift:
Step 5.4.2
Multiply by .
Phase Shift:
Phase Shift:
Phase Shift:
Step 6
List the properties of the trigonometric function.
Amplitude: None
Period:
Phase Shift: ( to the right)
Vertical Shift: None
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Vertical Asymptotes: where is an integer
Amplitude: None
Period:
Phase Shift: ( to the right)
Vertical Shift: None
Step 8