Trigonometry Examples

Find the Exact Value tan((13pi)/12)
tan(13π12)
Step 1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
tan(π12)
Step 2
Split π12 into two angles where the values of the six trigonometric functions are known.
tan(π4-π6)
Step 3
Apply the difference of angles identity.
tan(π4)-tan(π6)1+tan(π4)tan(π6)
Step 4
The exact value of tan(π4) is 1.
1-tan(π6)1+tan(π4)tan(π6)
Step 5
The exact value of tan(π6) is 33.
1-331+tan(π4)tan(π6)
Step 6
The exact value of tan(π4) is 1.
1-331+1tan(π6)
Step 7
The exact value of tan(π6) is 33.
1-331+133
Step 8
Simplify 1-331+133.
Tap for more steps...
Step 8.1
Multiply the numerator and denominator of the fraction by 3.
Tap for more steps...
Step 8.1.1
Multiply 1-331+133 by 33.
331-331+133
Step 8.1.2
Combine.
3(1-33)3(1+133)
3(1-33)3(1+133)
Step 8.2
Apply the distributive property.
31+3(-33)31+3(133)
Step 8.3
Cancel the common factor of 3.
Tap for more steps...
Step 8.3.1
Move the leading negative in -33 into the numerator.
31+3-3331+3(133)
Step 8.3.2
Cancel the common factor.
31+3-3331+3(133)
Step 8.3.3
Rewrite the expression.
31-331+3(133)
31-331+3(133)
Step 8.4
Multiply 3 by 1.
3-331+3133
Step 8.5
Simplify the denominator.
Tap for more steps...
Step 8.5.1
Multiply 3 by 1.
3-33+3133
Step 8.5.2
Cancel the common factor of 3.
Tap for more steps...
Step 8.5.2.1
Factor 3 out of 31.
3-33+3(1)33
Step 8.5.2.2
Cancel the common factor.
3-33+3133
Step 8.5.2.3
Rewrite the expression.
3-33+3
3-33+3
3-33+3
Step 8.6
Multiply 3-33+3 by 3-33-3.
3-33+33-33-3
Step 8.7
Multiply 3-33+3 by 3-33-3.
(3-3)(3-3)(3+3)(3-3)
Step 8.8
Expand the denominator using the FOIL method.
(3-3)(3-3)9-33+33-32
Step 8.9
Simplify.
(3-3)(3-3)6
Step 8.10
Simplify the numerator.
Tap for more steps...
Step 8.10.1
Raise 3-3 to the power of 1.
(3-3)1(3-3)6
Step 8.10.2
Raise 3-3 to the power of 1.
(3-3)1(3-3)16
Step 8.10.3
Use the power rule aman=am+n to combine exponents.
(3-3)1+16
Step 8.10.4
Add 1 and 1.
(3-3)26
(3-3)26
Step 8.11
Rewrite (3-3)2 as (3-3)(3-3).
(3-3)(3-3)6
Step 8.12
Expand (3-3)(3-3) using the FOIL Method.
Tap for more steps...
Step 8.12.1
Apply the distributive property.
3(3-3)-3(3-3)6
Step 8.12.2
Apply the distributive property.
33+3(-3)-3(3-3)6
Step 8.12.3
Apply the distributive property.
33+3(-3)-33-3(-3)6
33+3(-3)-33-3(-3)6
Step 8.13
Simplify and combine like terms.
Tap for more steps...
Step 8.13.1
Simplify each term.
Tap for more steps...
Step 8.13.1.1
Multiply 3 by 3.
9+3(-3)-33-3(-3)6
Step 8.13.1.2
Multiply -1 by 3.
9-33-33-3(-3)6
Step 8.13.1.3
Multiply 3 by -1.
9-33-33-3(-3)6
Step 8.13.1.4
Multiply -3(-3).
Tap for more steps...
Step 8.13.1.4.1
Multiply -1 by -1.
9-33-33+1336
Step 8.13.1.4.2
Multiply 3 by 1.
9-33-33+336
Step 8.13.1.4.3
Raise 3 to the power of 1.
9-33-33+3136
Step 8.13.1.4.4
Raise 3 to the power of 1.
9-33-33+31316
Step 8.13.1.4.5
Use the power rule aman=am+n to combine exponents.
9-33-33+31+16
Step 8.13.1.4.6
Add 1 and 1.
9-33-33+326
9-33-33+326
Step 8.13.1.5
Rewrite 32 as 3.
Tap for more steps...
Step 8.13.1.5.1
Use axn=axn to rewrite 3 as 312.
9-33-33+(312)26
Step 8.13.1.5.2
Apply the power rule and multiply exponents, (am)n=amn.
9-33-33+31226
Step 8.13.1.5.3
Combine 12 and 2.
9-33-33+3226
Step 8.13.1.5.4
Cancel the common factor of 2.
Tap for more steps...
Step 8.13.1.5.4.1
Cancel the common factor.
9-33-33+3226
Step 8.13.1.5.4.2
Rewrite the expression.
9-33-33+316
9-33-33+316
Step 8.13.1.5.5
Evaluate the exponent.
9-33-33+36
9-33-33+36
9-33-33+36
Step 8.13.2
Add 9 and 3.
12-33-336
Step 8.13.3
Subtract 33 from -33.
12-636
12-636
Step 8.14
Cancel the common factor of 12-63 and 6.
Tap for more steps...
Step 8.14.1
Factor 6 out of 12.
62-636
Step 8.14.2
Factor 6 out of -63.
62+6(-3)6
Step 8.14.3
Factor 6 out of 6(2)+6(-3).
6(2-3)6
Step 8.14.4
Cancel the common factors.
Tap for more steps...
Step 8.14.4.1
Factor 6 out of 6.
6(2-3)6(1)
Step 8.14.4.2
Cancel the common factor.
6(2-3)61
Step 8.14.4.3
Rewrite the expression.
2-31
Step 8.14.4.4
Divide 2-3 by 1.
2-3
2-3
2-3
2-3
Step 9
The result can be shown in multiple forms.
Exact Form:
2-3
Decimal Form:
0.26794919
 [x2  12  π  xdx ]