Enter a problem...
Trigonometry Examples
Step 1
Use the form to find the variables used to find the amplitude, period, phase shift, and vertical shift.
Step 2
Find the amplitude .
Amplitude:
Step 3
Step 3.1
The period of the function can be calculated using .
Step 3.2
Replace with in the formula for period.
Step 3.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 3.4
Cancel the common factor of and .
Step 3.4.1
Factor out of .
Step 3.4.2
Cancel the common factors.
Step 3.4.2.1
Factor out of .
Step 3.4.2.2
Cancel the common factor.
Step 3.4.2.3
Rewrite the expression.
Step 4
Step 4.1
The phase shift of the function can be calculated from .
Phase Shift:
Step 4.2
Replace the values of and in the equation for phase shift.
Phase Shift:
Step 4.3
Cancel the common factor of and .
Step 4.3.1
Factor out of .
Phase Shift:
Step 4.3.2
Cancel the common factors.
Step 4.3.2.1
Factor out of .
Phase Shift:
Step 4.3.2.2
Cancel the common factor.
Phase Shift:
Step 4.3.2.3
Rewrite the expression.
Phase Shift:
Phase Shift:
Phase Shift:
Step 4.4
Move the negative in front of the fraction.
Phase Shift:
Phase Shift:
Step 5
List the properties of the trigonometric function.
Amplitude:
Period:
Phase Shift: ( to the left)
Vertical Shift: None
Step 6
Step 6.1
Find the point at .
Step 6.1.1
Replace the variable with in the expression.
Step 6.1.2
Simplify the result.
Step 6.1.2.1
Simplify each term.
Step 6.1.2.1.1
Cancel the common factor of .
Step 6.1.2.1.1.1
Move the leading negative in into the numerator.
Step 6.1.2.1.1.2
Factor out of .
Step 6.1.2.1.1.3
Cancel the common factor.
Step 6.1.2.1.1.4
Rewrite the expression.
Step 6.1.2.1.2
Multiply by .
Step 6.1.2.2
Add and .
Step 6.1.2.3
The exact value of is .
Step 6.1.2.4
Multiply by .
Step 6.1.2.5
The final answer is .
Step 6.2
Find the point at .
Step 6.2.1
Replace the variable with in the expression.
Step 6.2.2
Simplify the result.
Step 6.2.2.1
Simplify each term.
Step 6.2.2.1.1
Apply the distributive property.
Step 6.2.2.1.2
Cancel the common factor of .
Step 6.2.2.1.2.1
Factor out of .
Step 6.2.2.1.2.2
Cancel the common factor.
Step 6.2.2.1.2.3
Rewrite the expression.
Step 6.2.2.1.3
Cancel the common factor of .
Step 6.2.2.1.3.1
Move the leading negative in into the numerator.
Step 6.2.2.1.3.2
Factor out of .
Step 6.2.2.1.3.3
Cancel the common factor.
Step 6.2.2.1.3.4
Rewrite the expression.
Step 6.2.2.1.4
Multiply by .
Step 6.2.2.2
Simplify by adding numbers.
Step 6.2.2.2.1
Add and .
Step 6.2.2.2.2
Add and .
Step 6.2.2.3
The exact value of is .
Step 6.2.2.4
Multiply by .
Step 6.2.2.5
The final answer is .
Step 6.3
Find the point at .
Step 6.3.1
Replace the variable with in the expression.
Step 6.3.2
Simplify the result.
Step 6.3.2.1
Simplify each term.
Step 6.3.2.1.1
Apply the distributive property.
Step 6.3.2.1.2
Cancel the common factor of .
Step 6.3.2.1.2.1
Cancel the common factor.
Step 6.3.2.1.2.2
Rewrite the expression.
Step 6.3.2.1.3
Cancel the common factor of .
Step 6.3.2.1.3.1
Move the leading negative in into the numerator.
Step 6.3.2.1.3.2
Factor out of .
Step 6.3.2.1.3.3
Cancel the common factor.
Step 6.3.2.1.3.4
Rewrite the expression.
Step 6.3.2.1.4
Multiply by .
Step 6.3.2.2
Simplify by adding numbers.
Step 6.3.2.2.1
Add and .
Step 6.3.2.2.2
Add and .
Step 6.3.2.3
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
Step 6.3.2.4
The exact value of is .
Step 6.3.2.5
Multiply .
Step 6.3.2.5.1
Multiply by .
Step 6.3.2.5.2
Multiply by .
Step 6.3.2.6
The final answer is .
Step 6.4
Find the point at .
Step 6.4.1
Replace the variable with in the expression.
Step 6.4.2
Simplify the result.
Step 6.4.2.1
Simplify each term.
Step 6.4.2.1.1
Apply the distributive property.
Step 6.4.2.1.2
Cancel the common factor of .
Step 6.4.2.1.2.1
Factor out of .
Step 6.4.2.1.2.2
Cancel the common factor.
Step 6.4.2.1.2.3
Rewrite the expression.
Step 6.4.2.1.3
Cancel the common factor of .
Step 6.4.2.1.3.1
Move the leading negative in into the numerator.
Step 6.4.2.1.3.2
Factor out of .
Step 6.4.2.1.3.3
Cancel the common factor.
Step 6.4.2.1.3.4
Rewrite the expression.
Step 6.4.2.1.4
Multiply by .
Step 6.4.2.2
Simplify by adding numbers.
Step 6.4.2.2.1
Add and .
Step 6.4.2.2.2
Add and .
Step 6.4.2.3
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
Step 6.4.2.4
The exact value of is .
Step 6.4.2.5
Multiply by .
Step 6.4.2.6
The final answer is .
Step 6.5
Find the point at .
Step 6.5.1
Replace the variable with in the expression.
Step 6.5.2
Simplify the result.
Step 6.5.2.1
Simplify each term.
Step 6.5.2.1.1
Apply the distributive property.
Step 6.5.2.1.2
Cancel the common factor of .
Step 6.5.2.1.2.1
Factor out of .
Step 6.5.2.1.2.2
Cancel the common factor.
Step 6.5.2.1.2.3
Rewrite the expression.
Step 6.5.2.1.3
Cancel the common factor of .
Step 6.5.2.1.3.1
Move the leading negative in into the numerator.
Step 6.5.2.1.3.2
Factor out of .
Step 6.5.2.1.3.3
Cancel the common factor.
Step 6.5.2.1.3.4
Rewrite the expression.
Step 6.5.2.1.4
Multiply by .
Step 6.5.2.2
Simplify by adding numbers.
Step 6.5.2.2.1
Add and .
Step 6.5.2.2.2
Add and .
Step 6.5.2.3
Subtract full rotations of until the angle is greater than or equal to and less than .
Step 6.5.2.4
The exact value of is .
Step 6.5.2.5
Multiply by .
Step 6.5.2.6
The final answer is .
Step 6.6
List the points in a table.
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Amplitude:
Period:
Phase Shift: ( to the left)
Vertical Shift: None
Step 8