Enter a problem...
Trigonometry Examples
sin(x)=14sin(x)=14 , sin(2x)sin(2x)
Step 1
Use the definition of sine to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
sin(x)=oppositehypotenusesin(x)=oppositehypotenuse
Step 2
Find the adjacent side of the unit circle triangle. Since the hypotenuse and opposite sides are known, use the Pythagorean theorem to find the remaining side.
Adjacent=√hypotenuse2-opposite2Adjacent=√hypotenuse2−opposite2
Step 3
Replace the known values in the equation.
Adjacent=√(4)2-(1)2Adjacent=√(4)2−(1)2
Step 4
Step 4.1
Raise 44 to the power of 22.
Adjacent =√16-(1)2=√16−(1)2
Step 4.2
One to any power is one.
Adjacent =√16-1⋅1=√16−1⋅1
Step 4.3
Multiply -1−1 by 11.
Adjacent =√16-1=√16−1
Step 4.4
Subtract 11 from 1616.
Adjacent =√15=√15
Adjacent =√15=√15
Step 5
Use the definition of sine to find the value of sin(x)sin(x).
sin(x)=oppositehypotenusesin(x)=oppositehypotenuse
Step 6
Substitute in the known values.
sin(x)=14sin(x)=14
Step 7
Apply the sine double-angle identity.
2sin(x)cos(x)2sin(x)cos(x)
Step 8
Use the definition of sinsin to find the value of sin(x)sin(x). In this case, sin(x)=14sin(x)=14.
sin(x)=14sin(x)=14
Step 9
Use the definition of coscos to find the value of cos(x)cos(x). In this case, cos(x)=√154cos(x)=√154.
cos(x)=√154cos(x)=√154
Step 10
Substitute the values into 2sin(x)cos(x)2sin(x)cos(x).
sin(2x)=2(14)⋅√154sin(2x)=2(14)⋅√154
Step 11
Step 11.1
Cancel the common factor of 22.
Step 11.1.1
Factor 22 out of 44.
sin(2x)=2(14)⋅√152(2)sin(2x)=2(14)⋅√152(2)
Step 11.1.2
Cancel the common factor.
sin(2x)=2(14)⋅√152⋅2
Step 11.1.3
Rewrite the expression.
sin(2x)=14⋅√152
sin(2x)=14⋅√152
Step 11.2
Multiply 14 by √152.
sin(2x)=√154⋅2
Step 11.3
Multiply 4 by 2.
sin(2x)=√158
sin(2x)=√158
Step 12
The result can be shown in multiple forms.
Exact Form:
sin(2x)=√158
Decimal Form:
sin(2x)=0.48412291…