Trigonometry Examples

Find the Trig Value sin(x)=1/4 , sin(2x)
sin(x)=14sin(x)=14 , sin(2x)sin(2x)
Step 1
Use the definition of sine to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
sin(x)=oppositehypotenusesin(x)=oppositehypotenuse
Step 2
Find the adjacent side of the unit circle triangle. Since the hypotenuse and opposite sides are known, use the Pythagorean theorem to find the remaining side.
Adjacent=hypotenuse2-opposite2Adjacent=hypotenuse2opposite2
Step 3
Replace the known values in the equation.
Adjacent=(4)2-(1)2Adjacent=(4)2(1)2
Step 4
Simplify inside the radical.
Tap for more steps...
Step 4.1
Raise 44 to the power of 22.
Adjacent =16-(1)2=16(1)2
Step 4.2
One to any power is one.
Adjacent =16-11=1611
Step 4.3
Multiply -11 by 11.
Adjacent =16-1=161
Step 4.4
Subtract 11 from 1616.
Adjacent =15=15
Adjacent =15=15
Step 5
Use the definition of sine to find the value of sin(x)sin(x).
sin(x)=oppositehypotenusesin(x)=oppositehypotenuse
Step 6
Substitute in the known values.
sin(x)=14sin(x)=14
Step 7
Apply the sine double-angle identity.
2sin(x)cos(x)2sin(x)cos(x)
Step 8
Use the definition of sinsin to find the value of sin(x)sin(x). In this case, sin(x)=14sin(x)=14.
sin(x)=14sin(x)=14
Step 9
Use the definition of coscos to find the value of cos(x)cos(x). In this case, cos(x)=154cos(x)=154.
cos(x)=154cos(x)=154
Step 10
Substitute the values into 2sin(x)cos(x)2sin(x)cos(x).
sin(2x)=2(14)154sin(2x)=2(14)154
Step 11
Evaluate 2(14)1542(14)154 to find sin(2x)sin(2x).
Tap for more steps...
Step 11.1
Cancel the common factor of 22.
Tap for more steps...
Step 11.1.1
Factor 22 out of 44.
sin(2x)=2(14)152(2)sin(2x)=2(14)152(2)
Step 11.1.2
Cancel the common factor.
sin(2x)=2(14)1522
Step 11.1.3
Rewrite the expression.
sin(2x)=14152
sin(2x)=14152
Step 11.2
Multiply 14 by 152.
sin(2x)=1542
Step 11.3
Multiply 4 by 2.
sin(2x)=158
sin(2x)=158
Step 12
The result can be shown in multiple forms.
Exact Form:
sin(2x)=158
Decimal Form:
sin(2x)=0.48412291
 [x2  12  π  xdx ]