Trigonometry Examples

Convert to Trigonometric Form -4-4i square root of 3+4i-4 square root of 3
-4-4i3+4i-4344i3+4i43
Step 1
Reorder -4-4i3+4i44i3+4i and -4343.
-43-4-4i3+4i4344i3+4i
Step 2
This is the trigonometric form of a complex number where |z||z| is the modulus and θθ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))z=a+bi=|z|(cos(θ)+isin(θ))
Step 3
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=a2+b2|z|=a2+b2 where z=a+biz=a+bi
Step 4
Substitute the actual values of a=-43a=43 and b=-4b=4.
|z|=(-4)2+(-43)2|z|=(4)2+(43)2
Step 5
Find |z||z|.
Tap for more steps...
Step 5.1
Simplify the expression.
Tap for more steps...
Step 5.1.1
Raise -44 to the power of 22.
|z|=16+(-43)2|z|=16+(43)2
Step 5.1.2
Apply the product rule to -4343.
|z|=16+(-4)232|z|=16+(4)232
Step 5.1.3
Raise -44 to the power of 22.
|z|=16+1632|z|=16+1632
|z|=16+1632|z|=16+1632
Step 5.2
Rewrite 3232 as 33.
Tap for more steps...
Step 5.2.1
Use nax=axnnax=axn to rewrite 33 as 312312.
|z|=16+16(312)2|z|=16+16(312)2
Step 5.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
|z|=16+163122|z|=16+163122
Step 5.2.3
Combine 1212 and 22.
|z|=16+16322|z|=16+16322
Step 5.2.4
Cancel the common factor of 22.
Tap for more steps...
Step 5.2.4.1
Cancel the common factor.
|z|=16+16322
Step 5.2.4.2
Rewrite the expression.
|z|=16+163
|z|=16+163
Step 5.2.5
Evaluate the exponent.
|z|=16+163
|z|=16+163
Step 5.3
Simplify the expression.
Tap for more steps...
Step 5.3.1
Multiply 16 by 3.
|z|=16+48
Step 5.3.2
Add 16 and 48.
|z|=64
Step 5.3.3
Rewrite 64 as 82.
|z|=82
Step 5.3.4
Pull terms out from under the radical, assuming positive real numbers.
|z|=8
|z|=8
|z|=8
Step 6
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(-4-43)
Step 7
Since inverse tangent of -4-43 produces an angle in the third quadrant, the value of the angle is 7π6.
θ=7π6
Step 8
Substitute the values of θ=7π6 and |z|=8.
8(cos(7π6)+isin(7π6))
 [x2  12  π  xdx ]