Enter a problem...
Trigonometry Examples
-4-4i√3+4i-4√3−4−4i√3+4i−4√3
Step 1
Reorder -4-4i√3+4i−4−4i√3+4i and -4√3−4√3.
-4√3-4-4i√3+4i−4√3−4−4i√3+4i
Step 2
This is the trigonometric form of a complex number where |z||z| is the modulus and θθ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))z=a+bi=|z|(cos(θ)+isin(θ))
Step 3
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=√a2+b2|z|=√a2+b2 where z=a+biz=a+bi
Step 4
Substitute the actual values of a=-4√3a=−4√3 and b=-4b=−4.
|z|=√(-4)2+(-4√3)2|z|=√(−4)2+(−4√3)2
Step 5
Step 5.1
Simplify the expression.
Step 5.1.1
Raise -4−4 to the power of 22.
|z|=√16+(-4√3)2|z|=√16+(−4√3)2
Step 5.1.2
Apply the product rule to -4√3−4√3.
|z|=√16+(-4)2√32|z|=√16+(−4)2√32
Step 5.1.3
Raise -4−4 to the power of 22.
|z|=√16+16√32|z|=√16+16√32
|z|=√16+16√32|z|=√16+16√32
Step 5.2
Rewrite √32√32 as 33.
Step 5.2.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
|z|=√16+16(312)2|z|=√16+16(312)2
Step 5.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
|z|=√16+16⋅312⋅2|z|=√16+16⋅312⋅2
Step 5.2.3
Combine 1212 and 22.
|z|=√16+16⋅322|z|=√16+16⋅322
Step 5.2.4
Cancel the common factor of 22.
Step 5.2.4.1
Cancel the common factor.
|z|=√16+16⋅322
Step 5.2.4.2
Rewrite the expression.
|z|=√16+16⋅3
|z|=√16+16⋅3
Step 5.2.5
Evaluate the exponent.
|z|=√16+16⋅3
|z|=√16+16⋅3
Step 5.3
Simplify the expression.
Step 5.3.1
Multiply 16 by 3.
|z|=√16+48
Step 5.3.2
Add 16 and 48.
|z|=√64
Step 5.3.3
Rewrite 64 as 82.
|z|=√82
Step 5.3.4
Pull terms out from under the radical, assuming positive real numbers.
|z|=8
|z|=8
|z|=8
Step 6
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(-4-4√3)
Step 7
Since inverse tangent of -4-4√3 produces an angle in the third quadrant, the value of the angle is 7π6.
θ=7π6
Step 8
Substitute the values of θ=7π6 and |z|=8.
8(cos(7π6)+isin(7π6))