Trigonometry Examples

Convert to Polar Coordinates (0,1)
(0,1)
Step 1
Convert from rectangular coordinates (x,y) to polar coordinates (r,θ) using the conversion formulas.
r=x2+y2
θ=tan-1(yx)
Step 2
Replace x and y with the actual values.
r=(0)2+(1)2
θ=tan-1(yx)
Step 3
Find the magnitude of the polar coordinate.
Tap for more steps...
Step 3.1
Raising 0 to any positive power yields 0.
r=0+(1)2
θ=tan-1(yx)
Step 3.2
One to any power is one.
r=0+1
θ=tan-1(yx)
Step 3.3
Add 0 and 1.
r=1
θ=tan-1(yx)
Step 3.4
Any root of 1 is 1.
r=1
θ=tan-1(yx)
r=1
θ=tan-1(yx)
Step 4
Replace x and y with the actual values.
r=1
θ=tan-1(10)
Step 5
The inverse tangent of Undefined is θ=90°.
r=1
θ=90°
Step 6
This is the result of the conversion to polar coordinates in (r,θ) form.
(1,90°)
 [x2  12  π  xdx ]