Trigonometry Examples

Convert to Interval Notation -3<(3x-6)/5<0
-3<3x-65<0
Step 1
Factor 3 out of 3x-6.
Tap for more steps...
Step 1.1
Factor 3 out of 3x.
-3<3(x)-65<0
Step 1.2
Factor 3 out of -6.
-3<3x+3-25<0
Step 1.3
Factor 3 out of 3x+3-2.
-3<3(x-2)5<0
-3<3(x-2)5<0
Step 2
Multiply each term in the inequality by 5.
-35<3(x-2)55<05
Step 3
Multiply -3 by 5.
-15<3(x-2)55<05
Step 4
Cancel the common factor of 5.
Tap for more steps...
Step 4.1
Cancel the common factor.
-15<3(x-2)55<05
Step 4.2
Rewrite the expression.
-15<3(x-2)<05
-15<3(x-2)<05
Step 5
Apply the distributive property.
-15<3x+3-2<05
Step 6
Multiply 3 by -2.
-15<3x-6<05
Step 7
Multiply 0 by 5.
-15<3x-6<0
Step 8
Move all terms not containing x from the center section of the inequality.
Tap for more steps...
Step 8.1
Add 6 to each section of the inequality because it does not contain the variable we are trying to solve for.
-15+6<3x<0+6
Step 8.2
Add -15 and 6.
-9<3x<0+6
Step 8.3
Add 0 and 6.
-9<3x<6
-9<3x<6
Step 9
Divide each term in the inequality by 3.
-93<3x3<63
Step 10
Divide -9 by 3.
-3<3x3<63
Step 11
Cancel the common factor of 3.
Tap for more steps...
Step 11.1
Cancel the common factor.
-3<3x3<63
Step 11.2
Divide x by 1.
-3<x<63
-3<x<63
Step 12
Divide 6 by 3.
-3<x<2
Step 13
Convert the inequality to interval notation.
(-3,2)
Step 14
 [x2  12  π  xdx ]