Enter a problem...
Trigonometry Examples
Step 1
Step 1.1
The exact value of is .
Step 1.1.1
Split into two angles where the values of the six trigonometric functions are known.
Step 1.1.2
Apply the difference of angles identity.
Step 1.1.3
The exact value of is .
Step 1.1.4
The exact value of is .
Step 1.1.5
The exact value of is .
Step 1.1.6
The exact value of is .
Step 1.1.7
Simplify .
Step 1.1.7.1
Simplify each term.
Step 1.1.7.1.1
Multiply .
Step 1.1.7.1.1.1
Multiply by .
Step 1.1.7.1.1.2
Combine using the product rule for radicals.
Step 1.1.7.1.1.3
Multiply by .
Step 1.1.7.1.1.4
Multiply by .
Step 1.1.7.1.2
Multiply .
Step 1.1.7.1.2.1
Multiply by .
Step 1.1.7.1.2.2
Multiply by .
Step 1.1.7.2
Combine the numerators over the common denominator.
Step 1.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
Step 1.3
The exact value of is .
Step 1.4
Multiply .
Step 1.4.1
Multiply by .
Step 1.4.2
Multiply by .
Step 1.5
The exact value of is .
Step 1.5.1
Split into two angles where the values of the six trigonometric functions are known.
Step 1.5.2
Apply the difference of angles identity .
Step 1.5.3
The exact value of is .
Step 1.5.4
The exact value of is .
Step 1.5.5
The exact value of is .
Step 1.5.6
The exact value of is .
Step 1.5.7
Simplify .
Step 1.5.7.1
Simplify each term.
Step 1.5.7.1.1
Multiply .
Step 1.5.7.1.1.1
Multiply by .
Step 1.5.7.1.1.2
Combine using the product rule for radicals.
Step 1.5.7.1.1.3
Multiply by .
Step 1.5.7.1.1.4
Multiply by .
Step 1.5.7.1.2
Multiply .
Step 1.5.7.1.2.1
Multiply by .
Step 1.5.7.1.2.2
Multiply by .
Step 1.5.7.2
Combine the numerators over the common denominator.
Step 1.6
Evaluate .
Step 1.7
Multiply .
Step 1.7.1
Combine and .
Step 1.7.2
Multiply by .
Step 1.8
Divide by .
Step 2
To write as a fraction with a common denominator, multiply by .
Step 3
Step 3.1
Combine and .
Step 3.2
Combine the numerators over the common denominator.
Step 4
Step 4.1
Apply the distributive property.
Step 4.2
Multiply .
Step 4.2.1
Multiply by .
Step 4.2.2
Multiply by .
Step 4.3
Multiply by .
Step 5
Step 5.1
Factor out of .
Step 5.2
Factor out of .
Step 5.3
Factor out of .
Step 5.4
Rewrite as .
Step 5.5
Factor out of .
Step 5.6
Simplify the expression.
Step 5.6.1
Rewrite as .
Step 5.6.2
Move the negative in front of the fraction.
Step 6
The result can be shown in multiple forms.
Exact Form:
Decimal Form: