Enter a problem...
Trigonometry Examples
cos(25)cos(15)-sin(25)sin(15)cos(25)cos(15)−sin(25)sin(15)
Step 1
The polynomial cannot be factored using the grouping method. Try a different method, or if you aren't sure, choose Factor.
The polynomial cannot be factored using the grouping method.
Step 2
Evaluate cos(25).
0.90630778cos(15)-sin(25)sin(15)
Step 3
Step 3.1
Split 15 into two angles where the values of the six trigonometric functions are known.
0.90630778cos(45-30)-sin(25)sin(15)
Step 3.2
Separate negation.
0.90630778cos(45-(30))-sin(25)sin(15)
Step 3.3
Apply the difference of angles identity cos(x-y)=cos(x)cos(y)+sin(x)sin(y).
0.90630778(cos(45)cos(30)+sin(45)sin(30))-sin(25)sin(15)
Step 3.4
The exact value of cos(45) is √22.
0.90630778(√22cos(30)+sin(45)sin(30))-sin(25)sin(15)
Step 3.5
The exact value of cos(30) is √32.
0.90630778(√22⋅√32+sin(45)sin(30))-sin(25)sin(15)
Step 3.6
The exact value of sin(45) is √22.
0.90630778(√22⋅√32+√22sin(30))-sin(25)sin(15)
Step 3.7
The exact value of sin(30) is 12.
0.90630778(√22⋅√32+√22⋅12)-sin(25)sin(15)
Step 3.8
Simplify √22⋅√32+√22⋅12.
Step 3.8.1
Simplify each term.
Step 3.8.1.1
Multiply √22⋅√32.
Step 3.8.1.1.1
Multiply √22 by √32.
0.90630778(√2√32⋅2+√22⋅12)-sin(25)sin(15)
Step 3.8.1.1.2
Combine using the product rule for radicals.
0.90630778(√2⋅32⋅2+√22⋅12)-sin(25)sin(15)
Step 3.8.1.1.3
Multiply 2 by 3.
0.90630778(√62⋅2+√22⋅12)-sin(25)sin(15)
Step 3.8.1.1.4
Multiply 2 by 2.
0.90630778(√64+√22⋅12)-sin(25)sin(15)
0.90630778(√64+√22⋅12)-sin(25)sin(15)
Step 3.8.1.2
Multiply √22⋅12.
Step 3.8.1.2.1
Multiply √22 by 12.
0.90630778(√64+√22⋅2)-sin(25)sin(15)
Step 3.8.1.2.2
Multiply 2 by 2.
0.90630778(√64+√24)-sin(25)sin(15)
0.90630778(√64+√24)-sin(25)sin(15)
0.90630778(√64+√24)-sin(25)sin(15)
Step 3.8.2
Combine the numerators over the common denominator.
0.90630778√6+√24-sin(25)sin(15)
0.90630778√6+√24-sin(25)sin(15)
0.90630778√6+√24-sin(25)sin(15)
Step 4
Step 4.1
Combine 0.90630778 and √6+√24.
0.90630778(√6+√2)4-sin(25)sin(15)
Step 4.2
Multiply 0.90630778 by √6+√2.
3.501704394-sin(25)sin(15)
3.501704394-sin(25)sin(15)
Step 5
Divide 3.50170439 by 4.
0.87542609-sin(25)sin(15)
Step 6
Evaluate sin(25).
0.87542609-1⋅0.42261826sin(15)
Step 7
Multiply -1 by 0.42261826.
0.87542609-0.42261826sin(15)
Step 8
Step 8.1
Split 15 into two angles where the values of the six trigonometric functions are known.
0.87542609-0.42261826sin(45-30)
Step 8.2
Separate negation.
0.87542609-0.42261826sin(45-(30))
Step 8.3
Apply the difference of angles identity.
0.87542609-0.42261826(sin(45)cos(30)-cos(45)sin(30))
Step 8.4
The exact value of sin(45) is √22.
0.87542609-0.42261826(√22cos(30)-cos(45)sin(30))
Step 8.5
The exact value of cos(30) is √32.
0.87542609-0.42261826(√22⋅√32-cos(45)sin(30))
Step 8.6
The exact value of cos(45) is √22.
0.87542609-0.42261826(√22⋅√32-√22sin(30))
Step 8.7
The exact value of sin(30) is 12.
0.87542609-0.42261826(√22⋅√32-√22⋅12)
Step 8.8
Simplify √22⋅√32-√22⋅12.
Step 8.8.1
Simplify each term.
Step 8.8.1.1
Multiply √22⋅√32.
Step 8.8.1.1.1
Multiply √22 by √32.
0.87542609-0.42261826(√2√32⋅2-√22⋅12)
Step 8.8.1.1.2
Combine using the product rule for radicals.
0.87542609-0.42261826(√2⋅32⋅2-√22⋅12)
Step 8.8.1.1.3
Multiply 2 by 3.
0.87542609-0.42261826(√62⋅2-√22⋅12)
Step 8.8.1.1.4
Multiply 2 by 2.
0.87542609-0.42261826(√64-√22⋅12)
0.87542609-0.42261826(√64-√22⋅12)
Step 8.8.1.2
Multiply -√22⋅12.
Step 8.8.1.2.1
Multiply 12 by √22.
0.87542609-0.42261826(√64-√22⋅2)
Step 8.8.1.2.2
Multiply 2 by 2.
0.87542609-0.42261826(√64-√24)
0.87542609-0.42261826(√64-√24)
0.87542609-0.42261826(√64-√24)
Step 8.8.2
Combine the numerators over the common denominator.
0.87542609-0.42261826√6-√24
0.87542609-0.42261826√6-√24
0.87542609-0.42261826√6-√24
Step 9
Step 9.1
Combine -0.42261826 and √6-√24.
0.87542609+-0.42261826(√6-√2)4
Step 9.2
Multiply -0.42261826 by √6-√2.
0.87542609+-0.437526614
0.87542609+-0.437526614
Step 10
Divide -0.43752661 by 4.
0.87542609-0.10938165
Step 11
Subtract 0.10938165 from 0.87542609.
0.76604444