Trigonometry Examples

Factor 2x^2+7x^3-8x^2+5
Step 1
Regroup terms.
Step 2
Reorder terms.
Step 3
Factor using the rational roots test.
Tap for more steps...
Step 3.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 3.2
Find every combination of . These are the possible roots of the polynomial function.
Step 3.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Tap for more steps...
Step 3.3.1
Substitute into the polynomial.
Step 3.3.2
Raise to the power of .
Step 3.3.3
Multiply by .
Step 3.3.4
Raise to the power of .
Step 3.3.5
Multiply by .
Step 3.3.6
Add and .
Step 3.3.7
Add and .
Step 3.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 3.5
Divide by .
Tap for more steps...
Step 3.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
++++
Step 3.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
++++
Step 3.5.3
Multiply the new quotient term by the divisor.
++++
++
Step 3.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
++++
--
Step 3.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++++
--
-
Step 3.5.6
Pull the next terms from the original dividend down into the current dividend.
++++
--
-+
Step 3.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
-
++++
--
-+
Step 3.5.8
Multiply the new quotient term by the divisor.
-
++++
--
-+
--
Step 3.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
-
++++
--
-+
++
Step 3.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
++++
--
-+
++
+
Step 3.5.11
Pull the next terms from the original dividend down into the current dividend.
-
++++
--
-+
++
++
Step 3.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
-+
++++
--
-+
++
++
Step 3.5.13
Multiply the new quotient term by the divisor.
-+
++++
--
-+
++
++
++
Step 3.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
-+
++++
--
-+
++
++
--
Step 3.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+
++++
--
-+
++
++
--
Step 3.5.16
Since the remander is , the final answer is the quotient.
Step 3.6
Write as a set of factors.
Step 4
Factor out of .
Tap for more steps...
Step 4.1
Reorder and .
Step 4.2
Factor out of .
Step 4.3
Factor out of .
Step 4.4
Factor out of .
Step 5
Expand by multiplying each term in the first expression by each term in the second expression.
Step 6
Simplify each term.
Tap for more steps...
Step 6.1
Rewrite using the commutative property of multiplication.
Step 6.2
Multiply by by adding the exponents.
Tap for more steps...
Step 6.2.1
Move .
Step 6.2.2
Multiply by .
Tap for more steps...
Step 6.2.2.1
Raise to the power of .
Step 6.2.2.2
Use the power rule to combine exponents.
Step 6.2.3
Add and .
Step 6.3
Multiply by .
Step 6.4
Rewrite using the commutative property of multiplication.
Step 6.5
Multiply by by adding the exponents.
Tap for more steps...
Step 6.5.1
Move .
Step 6.5.2
Multiply by .
Step 6.6
Multiply by .
Step 6.7
Multiply by .
Step 6.8
Multiply by .
Step 6.9
Multiply by .
Step 6.10
Multiply by .
Step 7
Combine the opposite terms in .
Tap for more steps...
Step 7.1
Add and .
Step 7.2
Add and .
Step 8
Subtract from .
Step 9
Add and .
Step 10
Factor.
Tap for more steps...
Step 10.1
Factor out of .
Tap for more steps...
Step 10.1.1
Factor out of .
Step 10.1.2
Factor out of .
Step 10.1.3
Rewrite as .
Step 10.1.4
Factor out of .
Step 10.1.5
Factor out of .
Step 10.2
Remove unnecessary parentheses.
Step 11
Combine exponents.
Tap for more steps...
Step 11.1
Factor out negative.
Step 11.2
Multiply by .
Step 11.3
Multiply by .