Trigonometry Examples

Convert from Degrees to Radians sin(105)
sin(105)
Step 1
To convert degrees to radians, multiply by π180°, since a full circle is 360° or 2π radians.

Step 2
The exact value of sin(105) is 2+64.
Tap for more steps...
Step 2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
sin(75)π180 radians
Step 2.2
Split 75 into two angles where the values of the six trigonometric functions are known.
sin(30+45)π180 radians
Step 2.3
Apply the sum of angles identity.
(sin(30)cos(45)+cos(30)sin(45))π180 radians
Step 2.4
The exact value of sin(30) is 12.
(12cos(45)+cos(30)sin(45))π180 radians
Step 2.5
The exact value of cos(45) is 22.
(1222+cos(30)sin(45))π180 radians
Step 2.6
The exact value of cos(30) is 32.
(1222+32sin(45))π180 radians
Step 2.7
The exact value of sin(45) is 22.
(1222+3222)π180 radians
Step 2.8
Simplify 1222+3222.
Tap for more steps...
Step 2.8.1
Simplify each term.
Tap for more steps...
Step 2.8.1.1
Multiply 1222.
Tap for more steps...
Step 2.8.1.1.1
Multiply 12 by 22.
(222+3222)π180 radians
Step 2.8.1.1.2
Multiply 2 by 2.
(24+3222)π180 radians
(24+3222)π180 radians
Step 2.8.1.2
Multiply 3222.
Tap for more steps...
Step 2.8.1.2.1
Multiply 32 by 22.
(24+3222)π180 radians
Step 2.8.1.2.2
Combine using the product rule for radicals.
(24+3222)π180 radians
Step 2.8.1.2.3
Multiply 3 by 2.
(24+622)π180 radians
Step 2.8.1.2.4
Multiply 2 by 2.
(24+64)π180 radians
(24+64)π180 radians
(24+64)π180 radians
Step 2.8.2
Combine the numerators over the common denominator.
2+64π180 radians
2+64π180 radians
2+64π180 radians
Step 3
Multiply 2+64π180.
Tap for more steps...
Step 3.1
Multiply 2+64 by π180.
(2+6)π4180 radians
Step 3.2
Multiply 4 by 180.
(2+6)π720 radians
(2+6)π720 radians
sin(105)
(
(
)
)
|
|
[
[
]
]
°
°
7
7
8
8
9
9
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]