Enter a problem...
Trigonometry Examples
Step 1
The supplement of is the angle that when added to forms a straight angle ().
Step 2
Step 2.1
The exact value of is .
Step 2.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
Step 2.1.2
Split into two angles where the values of the six trigonometric functions are known.
Step 2.1.3
Apply the sum of angles identity.
Step 2.1.4
The exact value of is .
Step 2.1.5
The exact value of is .
Step 2.1.6
The exact value of is .
Step 2.1.7
The exact value of is .
Step 2.1.8
Simplify .
Step 2.1.8.1
Multiply the numerator and denominator of the fraction by .
Step 2.1.8.1.1
Multiply by .
Step 2.1.8.1.2
Combine.
Step 2.1.8.2
Apply the distributive property.
Step 2.1.8.3
Cancel the common factor of .
Step 2.1.8.3.1
Cancel the common factor.
Step 2.1.8.3.2
Rewrite the expression.
Step 2.1.8.4
Multiply by .
Step 2.1.8.5
Simplify the denominator.
Step 2.1.8.5.1
Multiply by .
Step 2.1.8.5.2
Multiply by .
Step 2.1.8.5.3
Cancel the common factor of .
Step 2.1.8.5.3.1
Move the leading negative in into the numerator.
Step 2.1.8.5.3.2
Cancel the common factor.
Step 2.1.8.5.3.3
Rewrite the expression.
Step 2.1.8.6
Multiply by .
Step 2.1.8.7
Multiply by .
Step 2.1.8.8
Expand the denominator using the FOIL method.
Step 2.1.8.9
Simplify.
Step 2.1.8.10
Simplify the numerator.
Step 2.1.8.10.1
Reorder terms.
Step 2.1.8.10.2
Raise to the power of .
Step 2.1.8.10.3
Raise to the power of .
Step 2.1.8.10.4
Use the power rule to combine exponents.
Step 2.1.8.10.5
Add and .
Step 2.1.8.11
Rewrite as .
Step 2.1.8.12
Expand using the FOIL Method.
Step 2.1.8.12.1
Apply the distributive property.
Step 2.1.8.12.2
Apply the distributive property.
Step 2.1.8.12.3
Apply the distributive property.
Step 2.1.8.13
Simplify and combine like terms.
Step 2.1.8.13.1
Simplify each term.
Step 2.1.8.13.1.1
Multiply by .
Step 2.1.8.13.1.2
Move to the left of .
Step 2.1.8.13.1.3
Combine using the product rule for radicals.
Step 2.1.8.13.1.4
Multiply by .
Step 2.1.8.13.1.5
Rewrite as .
Step 2.1.8.13.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 2.1.8.13.2
Add and .
Step 2.1.8.13.3
Add and .
Step 2.1.8.14
Cancel the common factor of and .
Step 2.1.8.14.1
Factor out of .
Step 2.1.8.14.2
Factor out of .
Step 2.1.8.14.3
Factor out of .
Step 2.1.8.14.4
Cancel the common factors.
Step 2.1.8.14.4.1
Factor out of .
Step 2.1.8.14.4.2
Cancel the common factor.
Step 2.1.8.14.4.3
Rewrite the expression.
Step 2.1.8.14.4.4
Divide by .
Step 2.1.8.15
Apply the distributive property.
Step 2.1.8.16
Multiply by .
Step 2.2
Apply the distributive property.
Step 2.3
Multiply by .
Step 2.4
Multiply .
Step 2.4.1
Multiply by .
Step 2.4.2
Multiply by .
Step 3
Add and .