Trigonometry Examples

Find the Supplement cos(75)
cos(75)
Step 1
The supplement of cos(75) is the angle that when added to cos(75) forms a straight angle (180°).
180°-cos(75)
Step 2
The exact value of cos(75) is 6-24.
Tap for more steps...
Step 2.1
Split 75 into two angles where the values of the six trigonometric functions are known.

Step 2.2
Apply the sum of angles identity cos(x+y)=cos(x)cos(y)-sin(x)sin(y).

Step 2.3
The exact value of cos(30) is 32.

Step 2.4
The exact value of cos(45) is 22.

Step 2.5
The exact value of sin(30) is 12.

Step 2.6
The exact value of sin(45) is 22.

Step 2.7
Simplify 3222-1222.
Tap for more steps...
Step 2.7.1
Simplify each term.
Tap for more steps...
Step 2.7.1.1
Multiply 3222.
Tap for more steps...
Step 2.7.1.1.1
Multiply 32 by 22.

Step 2.7.1.1.2
Combine using the product rule for radicals.

Step 2.7.1.1.3
Multiply 3 by 2.

Step 2.7.1.1.4
Multiply 2 by 2.


Step 2.7.1.2
Multiply -1222.
Tap for more steps...
Step 2.7.1.2.1
Multiply 22 by 12.

Step 2.7.1.2.2
Multiply 2 by 2.



Step 2.7.2
Combine the numerators over the common denominator.
180-6-24°
180-6-24°
180-6-24°
Step 3
To write 180 as a fraction with a common denominator, multiply by 44.
18044-6-24°
Step 4
Combine fractions.
Tap for more steps...
Step 4.1
Combine 180 and 44.
18044-6-24°
Step 4.2
Combine the numerators over the common denominator.
1804-(6-2)4°
1804-(6-2)4°
Step 5
Simplify the numerator.
Tap for more steps...
Step 5.1
Multiply 180 by 4.
720-(6-2)4°
Step 5.2
Apply the distributive property.
720-6+24°
Step 5.3
Multiply --2.
Tap for more steps...
Step 5.3.1
Multiply -1 by -1.
720-6+124°
Step 5.3.2
Multiply 2 by 1.
720-6+24°
720-6+24°
720-6+24°
Step 6
The result can be shown in multiple forms.
Exact Form:
720-6+24°
Decimal Form:
179.74118095
 [x2  12  π  xdx ]