Enter a problem...
Trigonometry Examples
1-cos(x)1+cos(x)=(cot(x)-csc(x))2
Step 1
Start on the right side.
(cot(x)-csc(x))2
Step 2
Step 2.1
Write cot(x) in sines and cosines using the quotient identity.
(cos(x)sin(x)-csc(x))2
Step 2.2
Apply the reciprocal identity to csc(x).
(cos(x)sin(x)-1sin(x))2
Step 2.3
Simplify.
Step 2.3.1
Rewrite (cos(x)sin(x)-1sin(x))2 as (cos(x)sin(x)-1sin(x))(cos(x)sin(x)-1sin(x)).
(cos(x)sin(x)-1sin(x))(cos(x)sin(x)-1sin(x))
Step 2.3.2
Expand (cos(x)sin(x)-1sin(x))(cos(x)sin(x)-1sin(x)) using the FOIL Method.
Step 2.3.2.1
Apply the distributive property.
cos(x)sin(x)(cos(x)sin(x)-1sin(x))-1sin(x)(cos(x)sin(x)-1sin(x))
Step 2.3.2.2
Apply the distributive property.
cos(x)sin(x)⋅cos(x)sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)(cos(x)sin(x)-1sin(x))
Step 2.3.2.3
Apply the distributive property.
cos(x)sin(x)⋅cos(x)sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
cos(x)sin(x)⋅cos(x)sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3
Simplify and combine like terms.
Step 2.3.3.1
Simplify each term.
Step 2.3.3.1.1
Multiply cos(x)sin(x)⋅cos(x)sin(x).
Step 2.3.3.1.1.1
Multiply cos(x)sin(x) by cos(x)sin(x).
cos(x)cos(x)sin(x)sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.1.2
Raise cos(x) to the power of 1.
cos(x)1cos(x)sin(x)sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.1.3
Raise cos(x) to the power of 1.
cos(x)1cos(x)1sin(x)sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.1.4
Use the power rule aman=am+n to combine exponents.
cos(x)1+1sin(x)sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.1.5
Add 1 and 1.
cos(x)2sin(x)sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.1.6
Raise sin(x) to the power of 1.
cos(x)2sin(x)1sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.1.7
Raise sin(x) to the power of 1.
cos(x)2sin(x)1sin(x)1+cos(x)sin(x)(-1sin(x))-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.1.8
Use the power rule aman=am+n to combine exponents.
cos(x)2sin(x)1+1+cos(x)sin(x)(-1sin(x))-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.1.9
Add 1 and 1.
cos(x)2sin(x)2+cos(x)sin(x)(-1sin(x))-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
cos(x)2sin(x)2+cos(x)sin(x)(-1sin(x))-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.2
Multiply cos(x)sin(x)(-1sin(x)).
Step 2.3.3.1.2.1
Multiply cos(x)sin(x) by 1sin(x).
cos(x)2sin(x)2-cos(x)sin(x)sin(x)-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.2.2
Raise sin(x) to the power of 1.
cos(x)2sin(x)2-cos(x)sin(x)1sin(x)-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.2.3
Raise sin(x) to the power of 1.
cos(x)2sin(x)2-cos(x)sin(x)1sin(x)1-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.2.4
Use the power rule aman=am+n to combine exponents.
cos(x)2sin(x)2-cos(x)sin(x)1+1-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.2.5
Add 1 and 1.
cos(x)2sin(x)2-cos(x)sin(x)2-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
cos(x)2sin(x)2-cos(x)sin(x)2-1sin(x)⋅cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.3
Multiply -1sin(x)⋅cos(x)sin(x).
Step 2.3.3.1.3.1
Multiply cos(x)sin(x) by 1sin(x).
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.3.2
Raise sin(x) to the power of 1.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)1sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.3.3
Raise sin(x) to the power of 1.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)1sin(x)1-1sin(x)(-1sin(x))
Step 2.3.3.1.3.4
Use the power rule aman=am+n to combine exponents.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)1+1-1sin(x)(-1sin(x))
Step 2.3.3.1.3.5
Add 1 and 1.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2-1sin(x)(-1sin(x))
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2-1sin(x)(-1sin(x))
Step 2.3.3.1.4
Multiply -1sin(x)(-1sin(x)).
Step 2.3.3.1.4.1
Multiply -1 by -1.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+11sin(x)1sin(x)
Step 2.3.3.1.4.2
Multiply 1sin(x) by 1.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)⋅1sin(x)
Step 2.3.3.1.4.3
Multiply 1sin(x) by 1sin(x).
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)sin(x)
Step 2.3.3.1.4.4
Raise sin(x) to the power of 1.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)1sin(x)
Step 2.3.3.1.4.5
Raise sin(x) to the power of 1.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)1sin(x)1
Step 2.3.3.1.4.6
Use the power rule aman=am+n to combine exponents.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)1+1
Step 2.3.3.1.4.7
Add 1 and 1.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)2
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)2
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)2
Step 2.3.3.2
Combine the numerators over the common denominator.
cos(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)2
cos(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)2
Step 2.3.4
Combine the numerators over the common denominator.
cos(x)2-cos(x)-cos(x)+1sin(x)2
Step 2.3.5
Subtract cos(x) from -cos(x).
cos(x)2-2cos(x)+1sin(x)2
Step 2.3.6
Factor using the perfect square rule.
(cos(x)-1)2sin2(x)
(cos(x)-1)2sin2(x)
Step 2.4
Simplify.
Step 2.4.1
Rewrite (cos(x)-1)2 as (cos(x)-1)(cos(x)-1).
(cos(x)-1)(cos(x)-1)sin2(x)
Step 2.4.2
Expand (cos(x)-1)(cos(x)-1) using the FOIL Method.
Step 2.4.2.1
Apply the distributive property.
cos(x)(cos(x)-1)-1(cos(x)-1)sin2(x)
Step 2.4.2.2
Apply the distributive property.
cos(x)cos(x)+cos(x)⋅-1-1(cos(x)-1)sin2(x)
Step 2.4.2.3
Apply the distributive property.
cos(x)cos(x)+cos(x)⋅-1-1cos(x)-1⋅-1sin2(x)
cos(x)cos(x)+cos(x)⋅-1-1cos(x)-1⋅-1sin2(x)
Step 2.4.3
Simplify and combine like terms.
cos2(x)-2cos(x)+1sin2(x)
cos2(x)-2cos(x)+1sin2(x)
cos2(x)-2cos(x)+1sin2(x)
Step 3
Factor using the perfect square rule.
(cos(x)-1)2sin2(x)
Step 4
Apply Pythagorean identity in reverse.
(cos(x)-1)21-cos2(x)
Step 5
Step 5.1
Simplify the denominator.
Step 5.1.1
Rewrite 1 as 12.
(cos(x)-1)212-cos(x)2
Step 5.1.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=1 and b=cos(x).
(cos(x)-1)2(1+cos(x))(1-cos(x))
(cos(x)-1)2(1+cos(x))(1-cos(x))
Step 5.2
Cancel the common factor of (cos(x)-1)2 and 1-cos(x).
1-cos(x)1+cos(x)
1-cos(x)1+cos(x)
Step 6
Because the two sides have been shown to be equivalent, the equation is an identity.
1-cos(x)1+cos(x)=(cot(x)-csc(x))2 is an identity