Trigonometry Examples

Verify the Identity (1-cos(x))/(1+cos(x))=(cot(x)-csc(x))^2
1-cos(x)1+cos(x)=(cot(x)-csc(x))2
Step 1
Start on the right side.
(cot(x)-csc(x))2
Step 2
Convert to sines and cosines.
Tap for more steps...
Step 2.1
Write cot(x) in sines and cosines using the quotient identity.
(cos(x)sin(x)-csc(x))2
Step 2.2
Apply the reciprocal identity to csc(x).
(cos(x)sin(x)-1sin(x))2
Step 2.3
Simplify.
Tap for more steps...
Step 2.3.1
Rewrite (cos(x)sin(x)-1sin(x))2 as (cos(x)sin(x)-1sin(x))(cos(x)sin(x)-1sin(x)).
(cos(x)sin(x)-1sin(x))(cos(x)sin(x)-1sin(x))
Step 2.3.2
Expand (cos(x)sin(x)-1sin(x))(cos(x)sin(x)-1sin(x)) using the FOIL Method.
Tap for more steps...
Step 2.3.2.1
Apply the distributive property.
cos(x)sin(x)(cos(x)sin(x)-1sin(x))-1sin(x)(cos(x)sin(x)-1sin(x))
Step 2.3.2.2
Apply the distributive property.
cos(x)sin(x)cos(x)sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)(cos(x)sin(x)-1sin(x))
Step 2.3.2.3
Apply the distributive property.
cos(x)sin(x)cos(x)sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
cos(x)sin(x)cos(x)sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3
Simplify and combine like terms.
Tap for more steps...
Step 2.3.3.1
Simplify each term.
Tap for more steps...
Step 2.3.3.1.1
Multiply cos(x)sin(x)cos(x)sin(x).
Tap for more steps...
Step 2.3.3.1.1.1
Multiply cos(x)sin(x) by cos(x)sin(x).
cos(x)cos(x)sin(x)sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.1.2
Raise cos(x) to the power of 1.
cos(x)1cos(x)sin(x)sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.1.3
Raise cos(x) to the power of 1.
cos(x)1cos(x)1sin(x)sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.1.4
Use the power rule aman=am+n to combine exponents.
cos(x)1+1sin(x)sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.1.5
Add 1 and 1.
cos(x)2sin(x)sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.1.6
Raise sin(x) to the power of 1.
cos(x)2sin(x)1sin(x)+cos(x)sin(x)(-1sin(x))-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.1.7
Raise sin(x) to the power of 1.
cos(x)2sin(x)1sin(x)1+cos(x)sin(x)(-1sin(x))-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.1.8
Use the power rule aman=am+n to combine exponents.
cos(x)2sin(x)1+1+cos(x)sin(x)(-1sin(x))-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.1.9
Add 1 and 1.
cos(x)2sin(x)2+cos(x)sin(x)(-1sin(x))-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
cos(x)2sin(x)2+cos(x)sin(x)(-1sin(x))-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.2
Multiply cos(x)sin(x)(-1sin(x)).
Tap for more steps...
Step 2.3.3.1.2.1
Multiply cos(x)sin(x) by 1sin(x).
cos(x)2sin(x)2-cos(x)sin(x)sin(x)-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.2.2
Raise sin(x) to the power of 1.
cos(x)2sin(x)2-cos(x)sin(x)1sin(x)-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.2.3
Raise sin(x) to the power of 1.
cos(x)2sin(x)2-cos(x)sin(x)1sin(x)1-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.2.4
Use the power rule aman=am+n to combine exponents.
cos(x)2sin(x)2-cos(x)sin(x)1+1-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.2.5
Add 1 and 1.
cos(x)2sin(x)2-cos(x)sin(x)2-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
cos(x)2sin(x)2-cos(x)sin(x)2-1sin(x)cos(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.3
Multiply -1sin(x)cos(x)sin(x).
Tap for more steps...
Step 2.3.3.1.3.1
Multiply cos(x)sin(x) by 1sin(x).
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.3.2
Raise sin(x) to the power of 1.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)1sin(x)-1sin(x)(-1sin(x))
Step 2.3.3.1.3.3
Raise sin(x) to the power of 1.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)1sin(x)1-1sin(x)(-1sin(x))
Step 2.3.3.1.3.4
Use the power rule aman=am+n to combine exponents.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)1+1-1sin(x)(-1sin(x))
Step 2.3.3.1.3.5
Add 1 and 1.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2-1sin(x)(-1sin(x))
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2-1sin(x)(-1sin(x))
Step 2.3.3.1.4
Multiply -1sin(x)(-1sin(x)).
Tap for more steps...
Step 2.3.3.1.4.1
Multiply -1 by -1.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+11sin(x)1sin(x)
Step 2.3.3.1.4.2
Multiply 1sin(x) by 1.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)1sin(x)
Step 2.3.3.1.4.3
Multiply 1sin(x) by 1sin(x).
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)sin(x)
Step 2.3.3.1.4.4
Raise sin(x) to the power of 1.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)1sin(x)
Step 2.3.3.1.4.5
Raise sin(x) to the power of 1.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)1sin(x)1
Step 2.3.3.1.4.6
Use the power rule aman=am+n to combine exponents.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)1+1
Step 2.3.3.1.4.7
Add 1 and 1.
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)2
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)2
cos(x)2sin(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)2
Step 2.3.3.2
Combine the numerators over the common denominator.
cos(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)2
cos(x)2-cos(x)sin(x)2-cos(x)sin(x)2+1sin(x)2
Step 2.3.4
Combine the numerators over the common denominator.
cos(x)2-cos(x)-cos(x)+1sin(x)2
Step 2.3.5
Subtract cos(x) from -cos(x).
cos(x)2-2cos(x)+1sin(x)2
Step 2.3.6
Factor using the perfect square rule.
(cos(x)-1)2sin2(x)
(cos(x)-1)2sin2(x)
Step 2.4
Simplify.
Tap for more steps...
Step 2.4.1
Rewrite (cos(x)-1)2 as (cos(x)-1)(cos(x)-1).
(cos(x)-1)(cos(x)-1)sin2(x)
Step 2.4.2
Expand (cos(x)-1)(cos(x)-1) using the FOIL Method.
Tap for more steps...
Step 2.4.2.1
Apply the distributive property.
cos(x)(cos(x)-1)-1(cos(x)-1)sin2(x)
Step 2.4.2.2
Apply the distributive property.
cos(x)cos(x)+cos(x)-1-1(cos(x)-1)sin2(x)
Step 2.4.2.3
Apply the distributive property.
cos(x)cos(x)+cos(x)-1-1cos(x)-1-1sin2(x)
cos(x)cos(x)+cos(x)-1-1cos(x)-1-1sin2(x)
Step 2.4.3
Simplify and combine like terms.
cos2(x)-2cos(x)+1sin2(x)
cos2(x)-2cos(x)+1sin2(x)
cos2(x)-2cos(x)+1sin2(x)
Step 3
Factor using the perfect square rule.
(cos(x)-1)2sin2(x)
Step 4
Apply Pythagorean identity in reverse.
(cos(x)-1)21-cos2(x)
Step 5
Simplify.
Tap for more steps...
Step 5.1
Simplify the denominator.
Tap for more steps...
Step 5.1.1
Rewrite 1 as 12.
(cos(x)-1)212-cos(x)2
Step 5.1.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=1 and b=cos(x).
(cos(x)-1)2(1+cos(x))(1-cos(x))
(cos(x)-1)2(1+cos(x))(1-cos(x))
Step 5.2
Cancel the common factor of (cos(x)-1)2 and 1-cos(x).
1-cos(x)1+cos(x)
1-cos(x)1+cos(x)
Step 6
Because the two sides have been shown to be equivalent, the equation is an identity.
1-cos(x)1+cos(x)=(cot(x)-csc(x))2 is an identity
 [x2  12  π  xdx ]