Enter a problem...
Trigonometry Examples
1sin(x)+11sin(x)-1=tan2(x)+2tan(x)sec(x)+sec2(x)1sin(x)+11sin(x)−1=tan2(x)+2tan(x)sec(x)+sec2(x)
Step 1
Start on the right side.
tan2(x)+2tan(x)sec(x)+sec2(x)tan2(x)+2tan(x)sec(x)+sec2(x)
Step 2
Step 2.1
Rewrite tan(x)tan(x) in terms of sines and cosines.
(sin(x)cos(x))2+2tan(x)sec(x)+sec2(x)(sin(x)cos(x))2+2tan(x)sec(x)+sec2(x)
Step 2.2
Apply the product rule to sin(x)cos(x)sin(x)cos(x).
sin2(x)cos2(x)+2tan(x)sec(x)+sec2(x)sin2(x)cos2(x)+2tan(x)sec(x)+sec2(x)
Step 2.3
Rewrite tan(x)tan(x) in terms of sines and cosines.
sin2(x)cos2(x)+2sin(x)cos(x)sec(x)+sec2(x)sin2(x)cos2(x)+2sin(x)cos(x)sec(x)+sec2(x)
Step 2.4
Combine 22 and sin(x)cos(x)sin(x)cos(x).
sin2(x)cos2(x)+2sin(x)cos(x)sec(x)+sec2(x)sin2(x)cos2(x)+2sin(x)cos(x)sec(x)+sec2(x)
Step 2.5
Rewrite sec(x)sec(x) in terms of sines and cosines.
sin2(x)cos2(x)+2sin(x)cos(x)⋅1cos(x)+sec2(x)sin2(x)cos2(x)+2sin(x)cos(x)⋅1cos(x)+sec2(x)
Step 2.6
Multiply 2sin(x)cos(x)⋅1cos(x)2sin(x)cos(x)⋅1cos(x).
Step 2.6.1
Multiply 2sin(x)cos(x)2sin(x)cos(x) by 1cos(x)1cos(x).
sin2(x)cos2(x)+2sin(x)cos(x)cos(x)+sec2(x)sin2(x)cos2(x)+2sin(x)cos(x)cos(x)+sec2(x)
Step 2.6.2
Raise cos(x)cos(x) to the power of 11.
sin2(x)cos2(x)+2sin(x)cos1(x)cos(x)+sec2(x)sin2(x)cos2(x)+2sin(x)cos1(x)cos(x)+sec2(x)
Step 2.6.3
Raise cos(x)cos(x) to the power of 11.
sin2(x)cos2(x)+2sin(x)cos1(x)cos1(x)+sec2(x)sin2(x)cos2(x)+2sin(x)cos1(x)cos1(x)+sec2(x)
Step 2.6.4
Use the power rule aman=am+naman=am+n to combine exponents.
sin2(x)cos2(x)+2sin(x)cos(x)1+1+sec2(x)sin2(x)cos2(x)+2sin(x)cos(x)1+1+sec2(x)
Step 2.6.5
Add 11 and 11.
sin2(x)cos2(x)+2sin(x)cos2(x)+sec2(x)sin2(x)cos2(x)+2sin(x)cos2(x)+sec2(x)
sin2(x)cos2(x)+2sin(x)cos2(x)+sec2(x)sin2(x)cos2(x)+2sin(x)cos2(x)+sec2(x)
Step 2.7
Rewrite sec(x)sec(x) in terms of sines and cosines.
sin2(x)cos2(x)+2sin(x)cos2(x)+(1cos(x))2sin2(x)cos2(x)+2sin(x)cos2(x)+(1cos(x))2
Step 2.8
Apply the product rule to 1cos(x)1cos(x).
sin2(x)cos2(x)+2sin(x)cos2(x)+12cos2(x)sin2(x)cos2(x)+2sin(x)cos2(x)+12cos2(x)
Step 2.9
One to any power is one.
sin2(x)cos2(x)+2sin(x)cos2(x)+1cos2(x)sin2(x)cos2(x)+2sin(x)cos2(x)+1cos2(x)
sin2(x)cos2(x)+2sin(x)cos2(x)+1cos2(x)sin2(x)cos2(x)+2sin(x)cos2(x)+1cos2(x)
Step 3
Combine the numerators over the common denominator.
sin2(x)+2sin(x)cos2(x)+1cos2(x)sin2(x)+2sin(x)cos2(x)+1cos2(x)
Step 4
Step 4.1
Factor sin(x)sin(x) out of sin2(x)+2sin(x)sin2(x)+2sin(x).
Step 4.1.1
Factor sin(x) out of sin2(x).
sin(x)sin(x)+2sin(x)cos2(x)+1cos2(x)
Step 4.1.2
Factor sin(x) out of 2sin(x).
sin(x)sin(x)+sin(x)⋅2cos2(x)+1cos2(x)
Step 4.1.3
Factor sin(x) out of sin(x)sin(x)+sin(x)⋅2.
sin(x)(sin(x)+2)cos2(x)+1cos2(x)
sin(x)(sin(x)+2)cos2(x)+1cos2(x)
Step 4.2
Combine the numerators over the common denominator.
sin(x)(sin(x)+2)+1cos2(x)
Step 4.3
Simplify the numerator.
Step 4.3.1
Apply the distributive property.
sin(x)sin(x)+sin(x)⋅2+1cos2(x)
Step 4.3.2
Multiply sin(x)sin(x).
Step 4.3.2.1
Raise sin(x) to the power of 1.
sin1(x)sin(x)+sin(x)⋅2+1cos2(x)
Step 4.3.2.2
Raise sin(x) to the power of 1.
sin1(x)sin1(x)+sin(x)⋅2+1cos2(x)
Step 4.3.2.3
Use the power rule aman=am+n to combine exponents.
sin(x)1+1+sin(x)⋅2+1cos2(x)
Step 4.3.2.4
Add 1 and 1.
sin2(x)+sin(x)⋅2+1cos2(x)
sin2(x)+sin(x)⋅2+1cos2(x)
Step 4.3.3
Move 2 to the left of sin(x).
sin2(x)+2⋅sin(x)+1cos2(x)
Step 4.3.4
Rewrite sin2(x)+2sin(x)+1 in a factored form.
Step 4.3.4.1
Let u=sin(x). Substitute u for all occurrences of sin(x).
u2+2u+1cos2(x)
Step 4.3.4.2
Factor using the perfect square rule.
Step 4.3.4.2.1
Rewrite 1 as 12.
u2+2u+12cos2(x)
Step 4.3.4.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
2u=2⋅u⋅1
Step 4.3.4.2.3
Rewrite the polynomial.
u2+2⋅u⋅1+12cos2(x)
Step 4.3.4.2.4
Factor using the perfect square trinomial rule a2+2ab+b2=(a+b)2, where a=u and b=1.
(u+1)2cos2(x)
(u+1)2cos2(x)
Step 4.3.4.3
Replace all occurrences of u with sin(x).
(sin(x)+1)2cos2(x)
(sin(x)+1)2cos2(x)
(sin(x)+1)2cos2(x)
(sin(x)+1)2cos2(x)
Step 5
Apply Pythagorean identity in reverse.
(sin(x)+1)21-sin2(x)
Step 6
Simplify the denominator.
(sin(x)+1)2(1+sin(x))(1-sin(x))
Step 7
Cancel the common factor of (1+sin(x))2 and 1+sin(x).
1+sin(x)1-sin(x)
Step 8
Rewrite 1+sin(x)1-sin(x) as 1sin(x)+11sin(x)-1.
1sin(x)+11sin(x)-1
Step 9
Because the two sides have been shown to be equivalent, the equation is an identity.
1sin(x)+11sin(x)-1=tan2(x)+2tan(x)sec(x)+sec2(x) is an identity