Enter a problem...
Trigonometry Examples
Step 1
Start on the left side.
Step 2
Step 2.1
Write in sines and cosines using the quotient identity.
Step 2.2
Apply the product rule to .
Step 3
Step 3.1
Multiply the numerator and denominator of the fraction by .
Step 3.1.1
Multiply by .
Step 3.1.2
Combine.
Step 3.2
Apply the distributive property.
Step 3.3
Cancel the common factor of .
Step 3.3.1
Move the leading negative in into the numerator.
Step 3.3.2
Cancel the common factor.
Step 3.3.3
Rewrite the expression.
Step 3.4
Simplify the numerator.
Step 3.4.1
Rewrite as .
Step 3.4.2
Rewrite as .
Step 3.4.3
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.4.4
Simplify.
Step 3.4.4.1
Multiply .
Step 3.4.4.1.1
Raise to the power of .
Step 3.4.4.1.2
Raise to the power of .
Step 3.4.4.1.3
Use the power rule to combine exponents.
Step 3.4.4.1.4
Add and .
Step 3.4.4.2
Factor out of .
Step 3.4.4.2.1
Factor out of .
Step 3.4.4.2.2
Factor out of .
Step 3.4.4.2.3
Factor out of .
Step 3.4.4.3
Combine exponents.
Step 3.4.4.3.1
Raise to the power of .
Step 3.4.4.3.2
Raise to the power of .
Step 3.4.4.3.3
Use the power rule to combine exponents.
Step 3.4.4.3.4
Add and .
Step 3.4.5
Factor out of .
Step 3.4.5.1
Factor out of .
Step 3.4.5.2
Factor out of .
Step 3.4.5.3
Factor out of .
Step 3.4.6
Combine exponents.
Step 3.4.6.1
Raise to the power of .
Step 3.4.6.2
Raise to the power of .
Step 3.4.6.3
Use the power rule to combine exponents.
Step 3.4.6.4
Add and .
Step 3.5
Simplify the denominator.
Step 3.5.1
Rewrite as .
Step 3.5.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.5.3
Simplify.
Step 3.5.3.1
Multiply by .
Step 3.5.3.2
Multiply by .
Step 3.6
Cancel the common factor of .
Step 3.6.1
Cancel the common factor.
Step 3.6.2
Rewrite the expression.
Step 3.7
Cancel the common factor of .
Step 4
Because the two sides have been shown to be equivalent, the equation is an identity.
is an identity