Enter a problem...
Trigonometry Examples
Step 1
Start on the left side.
Step 2
Step 2.1
Write in sines and cosines using the quotient identity.
Step 2.2
Write in sines and cosines using the quotient identity.
Step 3
Step 3.1
Multiply the numerator and denominator of the fraction by .
Step 3.1.1
Multiply by .
Step 3.1.2
Combine.
Step 3.2
Apply the distributive property.
Step 3.3
Simplify by cancelling.
Step 3.3.1
Cancel the common factor of .
Step 3.3.1.1
Move the leading negative in into the numerator.
Step 3.3.1.2
Factor out of .
Step 3.3.1.3
Cancel the common factor.
Step 3.3.1.4
Rewrite the expression.
Step 3.3.2
Raise to the power of .
Step 3.3.3
Raise to the power of .
Step 3.3.4
Use the power rule to combine exponents.
Step 3.3.5
Add and .
Step 3.3.6
Cancel the common factor of .
Step 3.3.6.1
Move the leading negative in into the numerator.
Step 3.3.6.2
Cancel the common factor.
Step 3.3.6.3
Rewrite the expression.
Step 3.3.7
Raise to the power of .
Step 3.3.8
Raise to the power of .
Step 3.3.9
Use the power rule to combine exponents.
Step 3.3.10
Add and .
Step 3.4
Simplify the numerator.
Step 3.4.1
Factor out of .
Step 3.4.1.1
Factor out of .
Step 3.4.1.2
Factor out of .
Step 3.4.1.3
Factor out of .
Step 3.4.2
Factor out of .
Step 3.4.2.1
Factor out of .
Step 3.4.2.2
Factor out of .
Step 3.4.2.3
Factor out of .
Step 3.4.3
Multiply .
Step 3.4.3.1
Raise to the power of .
Step 3.4.3.2
Raise to the power of .
Step 3.4.3.3
Use the power rule to combine exponents.
Step 3.4.3.4
Add and .
Step 3.4.4
Factor out of .
Step 3.4.4.1
Factor out of .
Step 3.4.4.2
Factor out of .
Step 3.4.4.3
Factor out of .
Step 3.4.5
Multiply by by adding the exponents.
Step 3.4.5.1
Multiply by .
Step 3.4.5.1.1
Raise to the power of .
Step 3.4.5.1.2
Use the power rule to combine exponents.
Step 3.4.5.2
Add and .
Step 3.4.6
Multiply by by adding the exponents.
Step 3.4.6.1
Use the power rule to combine exponents.
Step 3.4.6.2
Subtract from .
Step 3.5
Simplify the denominator.
Step 3.5.1
Factor out of .
Step 3.5.1.1
Factor out of .
Step 3.5.1.2
Factor out of .
Step 3.5.1.3
Factor out of .
Step 3.5.2
Factor out of .
Step 3.5.2.1
Factor out of .
Step 3.5.2.2
Factor out of .
Step 3.5.2.3
Factor out of .
Step 3.5.3
Multiply .
Step 3.5.3.1
Raise to the power of .
Step 3.5.3.2
Raise to the power of .
Step 3.5.3.3
Use the power rule to combine exponents.
Step 3.5.3.4
Add and .
Step 3.5.4
Factor out of .
Step 3.5.4.1
Factor out of .
Step 3.5.4.2
Factor out of .
Step 3.5.4.3
Factor out of .
Step 3.5.5
Multiply by by adding the exponents.
Step 3.5.5.1
Multiply by .
Step 3.5.5.1.1
Raise to the power of .
Step 3.5.5.1.2
Use the power rule to combine exponents.
Step 3.5.5.2
Add and .
Step 3.5.6
Multiply by by adding the exponents.
Step 3.5.6.1
Use the power rule to combine exponents.
Step 3.5.6.2
Subtract from .
Step 3.6
Cancel the common factor of .
Step 4
Rewrite as .
Step 5
Because the two sides have been shown to be equivalent, the equation is an identity.
is an identity