Trigonometry Examples

Verify the Identity (csc(x)^2)/(cot(x)^2-1)=(sec(x)^2)/(1-tan(x)^2)
csc2(x)cot2(x)-1=sec2(x)1-tan2(x)csc2(x)cot2(x)1=sec2(x)1tan2(x)
Step 1
Start on the left side.
csc2(x)cot2(x)-1csc2(x)cot2(x)1
Step 2
Convert to sines and cosines.
Tap for more steps...
Step 2.1
Apply the reciprocal identity to csc(x)csc(x).
(1sin(x))2cot2(x)-1(1sin(x))2cot2(x)1
Step 2.2
Write cot(x)cot(x) in sines and cosines using the quotient identity.
(1sin(x))2(cos(x)sin(x))2-1(1sin(x))2(cos(x)sin(x))21
Step 2.3
Apply the product rule to 1sin(x)1sin(x).
12sin2(x)(cos(x)sin(x))2-112sin2(x)(cos(x)sin(x))21
Step 2.4
Apply the product rule to cos(x)sin(x)cos(x)sin(x).
12sin2(x)cos2(x)sin2(x)-112sin2(x)cos2(x)sin2(x)1
12sin2(x)cos2(x)sin2(x)-112sin2(x)cos2(x)sin2(x)1
Step 3
Simplify.
Tap for more steps...
Step 3.1
Multiply the numerator by the reciprocal of the denominator.
12sin(x)21cos(x)2sin(x)2-112sin(x)21cos(x)2sin(x)21
Step 3.2
One to any power is one.
1sin(x)21cos(x)2sin(x)2-11sin(x)21cos(x)2sin(x)21
Step 3.3
Simplify the denominator.
Tap for more steps...
Step 3.3.1
Rewrite cos(x)2sin(x)2cos(x)2sin(x)2 as (cos(x)sin(x))2(cos(x)sin(x))2.
1sin(x)21(cos(x)sin(x))2-11sin(x)21(cos(x)sin(x))21
Step 3.3.2
Rewrite 11 as 1212.
1sin(x)21(cos(x)sin(x))2-121sin(x)21(cos(x)sin(x))212
Step 3.3.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=cos(x)sin(x)a=cos(x)sin(x) and b=1b=1.
1sin(x)21(cos(x)sin(x)+1)(cos(x)sin(x)-1)1sin(x)21(cos(x)sin(x)+1)(cos(x)sin(x)1)
Step 3.3.4
Write 11 as a fraction with a common denominator.
1sin(x)21(cos(x)sin(x)+sin(x)sin(x))(cos(x)sin(x)-1)1sin(x)21(cos(x)sin(x)+sin(x)sin(x))(cos(x)sin(x)1)
Step 3.3.5
Combine the numerators over the common denominator.
1sin(x)21cos(x)+sin(x)sin(x)(cos(x)sin(x)-1)1sin(x)21cos(x)+sin(x)sin(x)(cos(x)sin(x)1)
Step 3.3.6
To write -11 as a fraction with a common denominator, multiply by sin(x)sin(x)sin(x)sin(x).
1sin(x)21cos(x)+sin(x)sin(x)(cos(x)sin(x)-1sin(x)sin(x))1sin(x)21cos(x)+sin(x)sin(x)(cos(x)sin(x)1sin(x)sin(x))
Step 3.3.7
Combine -1 and sin(x)sin(x).
1sin(x)21cos(x)+sin(x)sin(x)(cos(x)sin(x)+-sin(x)sin(x))
Step 3.3.8
Combine the numerators over the common denominator.
1sin(x)21cos(x)+sin(x)sin(x)cos(x)-sin(x)sin(x)
1sin(x)21cos(x)+sin(x)sin(x)cos(x)-sin(x)sin(x)
Step 3.4
Multiply cos(x)+sin(x)sin(x) by cos(x)-sin(x)sin(x).
1sin(x)21(cos(x)+sin(x))(cos(x)-sin(x))sin(x)sin(x)
Step 3.5
Simplify the denominator.
Tap for more steps...
Step 3.5.1
Raise sin(x) to the power of 1.
1sin(x)21(cos(x)+sin(x))(cos(x)-sin(x))sin(x)1sin(x)
Step 3.5.2
Raise sin(x) to the power of 1.
1sin(x)21(cos(x)+sin(x))(cos(x)-sin(x))sin(x)1sin(x)1
Step 3.5.3
Use the power rule aman=am+n to combine exponents.
1sin(x)21(cos(x)+sin(x))(cos(x)-sin(x))sin(x)1+1
Step 3.5.4
Add 1 and 1.
1sin(x)21(cos(x)+sin(x))(cos(x)-sin(x))sin(x)2
1sin(x)21(cos(x)+sin(x))(cos(x)-sin(x))sin(x)2
Step 3.6
Combine.
11sin(x)2(cos(x)+sin(x))(cos(x)-sin(x))sin(x)2
Step 3.7
Multiply 1 by 1.
1sin(x)2(cos(x)+sin(x))(cos(x)-sin(x))sin(x)2
Step 3.8
Combine sin(x)2 and (cos(x)+sin(x))(cos(x)-sin(x))sin(x)2.
1sin(x)2((cos(x)+sin(x))(cos(x)-sin(x)))sin(x)2
Step 3.9
Reduce the expression by cancelling the common factors.
1(cos(x)+sin(x))(cos(x)-sin(x))
1(cos(x)+sin(x))(cos(x)-sin(x))
Step 4
Rewrite 1(cos(x)+sin(x))(cos(x)-sin(x)) as sec2(x)1-tan2(x).
sec2(x)1-tan2(x)
Step 5
Because the two sides have been shown to be equivalent, the equation is an identity.
csc2(x)cot2(x)-1=sec2(x)1-tan2(x) is an identity
 [x2  12  π  xdx ]