Trigonometry Examples

Verify the Identity cos(x+pi/4)+cos(x-pi/4) = square root of 2cos(x)
cos(x+π4)+cos(x-π4)=2cos(x)
Step 1
Start on the left side.
cos(x+π4)+cos(x-π4)
Step 2
Apply the sum of angles identity cos(x+y)=cos(x)cos(y)-sin(x)sin(y).
cos(x)cos(π4)-sin(x)sin(π4)+cos(x-π4)
Step 3
Apply the sum of angles identity cos(x+y)=cos(x)cos(y)-sin(x)sin(y).
cos(x)cos(π4)-sin(x)sin(π4)+cos(x)cos(-π4)-sin(x)sin(-π4)
Step 4
Simplify the expression.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
The exact value of cos(π4) is 22.
cos(x)22-sin(x)sin(π4)+cos(x)cos(-π4)-sin(x)sin(-π4)
Step 4.1.2
Combine cos(x) and 22.
cos(x)22-sin(x)sin(π4)+cos(x)cos(-π4)-sin(x)sin(-π4)
Step 4.1.3
The exact value of sin(π4) is 22.
cos(x)22-sin(x)22+cos(x)cos(-π4)-sin(x)sin(-π4)
Step 4.1.4
Combine 22 and sin(x).
cos(x)22-2sin(x)2+cos(x)cos(-π4)-sin(x)sin(-π4)
Step 4.1.5
Add full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
cos(x)22-2sin(x)2+cos(x)cos(7π4)-sin(x)sin(-π4)
Step 4.1.6
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
cos(x)22-2sin(x)2+cos(x)cos(π4)-sin(x)sin(-π4)
Step 4.1.7
The exact value of cos(π4) is 22.
cos(x)22-2sin(x)2+cos(x)22-sin(x)sin(-π4)
Step 4.1.8
Combine cos(x) and 22.
cos(x)22-2sin(x)2+cos(x)22-sin(x)sin(-π4)
Step 4.1.9
Add full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
cos(x)22-2sin(x)2+cos(x)22-sin(x)sin(7π4)
Step 4.1.10
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.
cos(x)22-2sin(x)2+cos(x)22-sin(x)(-sin(π4))
Step 4.1.11
The exact value of sin(π4) is 22.
cos(x)22-2sin(x)2+cos(x)22-sin(x)(-22)
Step 4.1.12
Multiply -sin(x)(-22).
Tap for more steps...
Step 4.1.12.1
Multiply -1 by -1.
cos(x)22-2sin(x)2+cos(x)22+1sin(x)22
Step 4.1.12.2
Multiply sin(x) by 1.
cos(x)22-2sin(x)2+cos(x)22+sin(x)22
Step 4.1.12.3
Combine sin(x) and 22.
cos(x)22-2sin(x)2+cos(x)22+sin(x)22
cos(x)22-2sin(x)2+cos(x)22+sin(x)22
cos(x)22-2sin(x)2+cos(x)22+sin(x)22
Step 4.2
Combine the opposite terms in cos(x)22-2sin(x)2+cos(x)22+sin(x)22.
Tap for more steps...
Step 4.2.1
Reorder the factors in the terms -2sin(x)2 and sin(x)22.
cos(x)22-2sin(x)2+cos(x)22+2sin(x)2
Step 4.2.2
Add -2sin(x)2 and 2sin(x)2.
cos(x)22+0+cos(x)22
Step 4.2.3
Add cos(x)22 and 0.
cos(x)22+cos(x)22
cos(x)22+cos(x)22
Step 4.3
Combine the numerators over the common denominator.
cos(x)2+cos(x)22
Step 4.4
Add cos(x)2 and cos(x)2.
2cos(x)22
Step 4.5
Cancel the common factor of 2.
Tap for more steps...
Step 4.5.1
Cancel the common factor.
2cos(x)22
Step 4.5.2
Divide cos(x)2 by 1.
cos(x)2
cos(x)2
cos(x)2
Step 5
Reorder factors in cos(x)2.
2cos(x)
Step 6
Because the two sides have been shown to be equivalent, the equation is an identity.
cos(x+π4)+cos(x-π4)=2cos(x) is an identity
 [x2  12  π  xdx ]