Enter a problem...
Trigonometry Examples
cos(x+π4)+cos(x-π4)=√2cos(x)
Step 1
Start on the left side.
cos(x+π4)+cos(x-π4)
Step 2
Apply the sum of angles identity cos(x+y)=cos(x)cos(y)-sin(x)sin(y).
cos(x)cos(π4)-sin(x)sin(π4)+cos(x-π4)
Step 3
Apply the sum of angles identity cos(x+y)=cos(x)cos(y)-sin(x)sin(y).
cos(x)cos(π4)-sin(x)sin(π4)+cos(x)cos(-π4)-sin(x)sin(-π4)
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
The exact value of cos(π4) is √22.
cos(x)√22-sin(x)sin(π4)+cos(x)cos(-π4)-sin(x)sin(-π4)
Step 4.1.2
Combine cos(x) and √22.
cos(x)√22-sin(x)sin(π4)+cos(x)cos(-π4)-sin(x)sin(-π4)
Step 4.1.3
The exact value of sin(π4) is √22.
cos(x)√22-sin(x)√22+cos(x)cos(-π4)-sin(x)sin(-π4)
Step 4.1.4
Combine √22 and sin(x).
cos(x)√22-√2sin(x)2+cos(x)cos(-π4)-sin(x)sin(-π4)
Step 4.1.5
Add full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
cos(x)√22-√2sin(x)2+cos(x)cos(7π4)-sin(x)sin(-π4)
Step 4.1.6
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
cos(x)√22-√2sin(x)2+cos(x)cos(π4)-sin(x)sin(-π4)
Step 4.1.7
The exact value of cos(π4) is √22.
cos(x)√22-√2sin(x)2+cos(x)√22-sin(x)sin(-π4)
Step 4.1.8
Combine cos(x) and √22.
cos(x)√22-√2sin(x)2+cos(x)√22-sin(x)sin(-π4)
Step 4.1.9
Add full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
cos(x)√22-√2sin(x)2+cos(x)√22-sin(x)sin(7π4)
Step 4.1.10
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.
cos(x)√22-√2sin(x)2+cos(x)√22-sin(x)(-sin(π4))
Step 4.1.11
The exact value of sin(π4) is √22.
cos(x)√22-√2sin(x)2+cos(x)√22-sin(x)(-√22)
Step 4.1.12
Multiply -sin(x)(-√22).
Step 4.1.12.1
Multiply -1 by -1.
cos(x)√22-√2sin(x)2+cos(x)√22+1sin(x)√22
Step 4.1.12.2
Multiply sin(x) by 1.
cos(x)√22-√2sin(x)2+cos(x)√22+sin(x)√22
Step 4.1.12.3
Combine sin(x) and √22.
cos(x)√22-√2sin(x)2+cos(x)√22+sin(x)√22
cos(x)√22-√2sin(x)2+cos(x)√22+sin(x)√22
cos(x)√22-√2sin(x)2+cos(x)√22+sin(x)√22
Step 4.2
Combine the opposite terms in cos(x)√22-√2sin(x)2+cos(x)√22+sin(x)√22.
Step 4.2.1
Reorder the factors in the terms -√2sin(x)2 and sin(x)√22.
cos(x)√22-√2sin(x)2+cos(x)√22+√2sin(x)2
Step 4.2.2
Add -√2sin(x)2 and √2sin(x)2.
cos(x)√22+0+cos(x)√22
Step 4.2.3
Add cos(x)√22 and 0.
cos(x)√22+cos(x)√22
cos(x)√22+cos(x)√22
Step 4.3
Combine the numerators over the common denominator.
cos(x)√2+cos(x)√22
Step 4.4
Add cos(x)√2 and cos(x)√2.
2cos(x)√22
Step 4.5
Cancel the common factor of 2.
Step 4.5.1
Cancel the common factor.
2cos(x)√22
Step 4.5.2
Divide cos(x)√2 by 1.
cos(x)√2
cos(x)√2
cos(x)√2
Step 5
Reorder factors in cos(x)√2.
√2cos(x)
Step 6
Because the two sides have been shown to be equivalent, the equation is an identity.
cos(x+π4)+cos(x-π4)=√2cos(x) is an identity