Enter a problem...
Trigonometry Examples
cos(-x)-sin(-x)=cos(x)+sin(x)cos(−x)−sin(−x)=cos(x)+sin(x)
Step 1
Start on the left side.
cos(-x)-sin(-x)cos(−x)−sin(−x)
Step 2
Since cos(-x)cos(−x) is an even function, rewrite cos(-x)cos(−x) as cos(x)cos(x).
cos(x)-sin(-x)cos(x)−sin(−x)
Step 3
Since sin(-x)sin(−x) is an odd function, rewrite sin(-x)sin(−x) as -sin(x)−sin(x).
cos(x)--sin(x)cos(x)−−sin(x)
Step 4
Multiply --sin(x)−−sin(x).
cos(x)+sin(x)cos(x)+sin(x)
Step 5
Because the two sides have been shown to be equivalent, the equation is an identity.
cos(-x)-sin(-x)=cos(x)+sin(x)cos(−x)−sin(−x)=cos(x)+sin(x) is an identity