Trigonometry Examples

Verify the Identity cos(-x)-sin(-x)=cos(x)+sin(x)
cos(-x)-sin(-x)=cos(x)+sin(x)cos(x)sin(x)=cos(x)+sin(x)
Step 1
Start on the left side.
cos(-x)-sin(-x)cos(x)sin(x)
Step 2
Since cos(-x)cos(x) is an even function, rewrite cos(-x)cos(x) as cos(x)cos(x).
cos(x)-sin(-x)cos(x)sin(x)
Step 3
Since sin(-x)sin(x) is an odd function, rewrite sin(-x)sin(x) as -sin(x)sin(x).
cos(x)--sin(x)cos(x)sin(x)
Step 4
Multiply --sin(x)sin(x).
cos(x)+sin(x)cos(x)+sin(x)
Step 5
Because the two sides have been shown to be equivalent, the equation is an identity.
cos(-x)-sin(-x)=cos(x)+sin(x)cos(x)sin(x)=cos(x)+sin(x) is an identity
 [x2  12  π  xdx ]  x2  12  π  xdx