Trigonometry Examples

Find the Exact Value 2cos(157.5)^2-1
2cos2(157.5)-1
Step 1
Apply the cosine double-angle identity.
cos(2157.5)
Step 2
Multiply 2 by 157.5.
cos(315)
Step 3
The exact value of cos(315) is 22.
Tap for more steps...
Step 3.1
Rewrite 315 as an angle where the values of the six trigonometric functions are known divided by 2.
cos(6302)
Step 3.2
Apply the cosine half-angle identity cos(x2)=±1+cos(x)2.
±1+cos(630)2
Step 3.3
Change the ± to + because cosine is positive in the fourth quadrant.
1+cos(630)2
Step 3.4
Simplify 1+cos(630)2.
Tap for more steps...
Step 3.4.1
Remove full rotations of 360° until the angle is between 0° and 360°.
1+cos(270)2
Step 3.4.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the third quadrant.
1-cos(90)2
Step 3.4.3
The exact value of cos(90) is 0.
1-02
Step 3.4.4
Multiply -1 by 0.
1+02
Step 3.4.5
Add 1 and 0.
12
Step 3.4.6
Rewrite 12 as 12.
12
Step 3.4.7
Any root of 1 is 1.
12
Step 3.4.8
Multiply 12 by 22.
1222
Step 3.4.9
Combine and simplify the denominator.
Tap for more steps...
Step 3.4.9.1
Multiply 12 by 22.
222
Step 3.4.9.2
Raise 2 to the power of 1.
2212
Step 3.4.9.3
Raise 2 to the power of 1.
22121
Step 3.4.9.4
Use the power rule aman=am+n to combine exponents.
221+1
Step 3.4.9.5
Add 1 and 1.
222
Step 3.4.9.6
Rewrite 22 as 2.
Tap for more steps...
Step 3.4.9.6.1
Use axn=axn to rewrite 2 as 212.
2(212)2
Step 3.4.9.6.2
Apply the power rule and multiply exponents, (am)n=amn.
22122
Step 3.4.9.6.3
Combine 12 and 2.
2222
Step 3.4.9.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 3.4.9.6.4.1
Cancel the common factor.
2222
Step 3.4.9.6.4.2
Rewrite the expression.
221
221
Step 3.4.9.6.5
Evaluate the exponent.
22
22
22
22
22
Step 4
The result can be shown in multiple forms.
Exact Form:
22
Decimal Form:
0.70710678
 [x2  12  π  xdx ]