Trigonometry Examples

Expand the Trigonometric Expression (cos(a-b))/(cos(a)cos(b))
cos(a-b)cos(a)cos(b)
Step 1
Separate fractions.
1cos(b)cos(a-b)cos(a)
Step 2
Rewrite cos(a-b)cos(a) as a product.
1cos(b)(cos(a-b)1cos(a))
Step 3
Write cos(a-b) as a fraction with denominator 1.
1cos(b)(cos(a-b)11cos(a))
Step 4
Simplify.
Tap for more steps...
Step 4.1
Divide cos(a-b) by 1.
1cos(b)(cos(a-b)1cos(a))
Step 4.2
Convert from 1cos(a) to sec(a).
1cos(b)(cos(a-b)sec(a))
1cos(b)(cos(a-b)sec(a))
Step 5
Convert from 1cos(b) to sec(b).
sec(b)(cos(a-b)sec(a))
Step 6
Apply the difference of angles identity cos(x-y)=cos(x)cos(y)+sin(x)sin(y).
sec(b)((cos(a)cos(b)+sin(a)sin(b))sec(a))
Step 7
Simplify by multiplying through.
Tap for more steps...
Step 7.1
Apply the distributive property.
sec(b)(cos(a)cos(b)sec(a)+sin(a)sin(b)sec(a))
Step 7.2
Apply the distributive property.
sec(b)cos(a)cos(b)sec(a)+sec(b)sin(a)sin(b)sec(a)
sec(b)cos(a)cos(b)sec(a)+sec(b)sin(a)sin(b)sec(a)
 [x2  12  π  xdx ]