Trigonometry Examples

Expand the Trigonometric Expression (1+sin(2x)+cos(2x))/(1+sin(2x)-cos(2x))
1+sin(2x)+cos(2x)1+sin(2x)-cos(2x)
Step 1
Simplify the numerator.
Tap for more steps...
Step 1.1
Apply the sine double-angle identity.
1+2sin(x)cos(x)+cos(2x)1+sin(2x)-cos(2x)
Step 1.2
Use the double-angle identity to transform cos(2x) to 2cos2(x)-1.
1+2sin(x)cos(x)+2cos2(x)-11+sin(2x)-cos(2x)
Step 1.3
Subtract 1 from 1.
0+2sin(x)cos(x)+2cos2(x)1+sin(2x)-cos(2x)
Step 1.4
Add 0 and 2sin(x)cos(x).
2sin(x)cos(x)+2cos2(x)1+sin(2x)-cos(2x)
Step 1.5
Factor 2cos(x) out of 2sin(x)cos(x)+2cos2(x).
Tap for more steps...
Step 1.5.1
Factor 2cos(x) out of 2sin(x)cos(x).
2cos(x)(sin(x))+2cos2(x)1+sin(2x)-cos(2x)
Step 1.5.2
Factor 2cos(x) out of 2cos2(x).
2cos(x)(sin(x))+2cos(x)(cos(x))1+sin(2x)-cos(2x)
Step 1.5.3
Factor 2cos(x) out of 2cos(x)(sin(x))+2cos(x)(cos(x)).
2cos(x)(sin(x)+cos(x))1+sin(2x)-cos(2x)
2cos(x)(sin(x)+cos(x))1+sin(2x)-cos(2x)
2cos(x)(sin(x)+cos(x))1+sin(2x)-cos(2x)
Step 2
Simplify the denominator.
Tap for more steps...
Step 2.1
Apply the sine double-angle identity.
2cos(x)(sin(x)+cos(x))1+2sin(x)cos(x)-cos(2x)
Step 2.2
Use the double-angle identity to transform cos(2x) to 2cos2(x)-1.
2cos(x)(sin(x)+cos(x))1+2sin(x)cos(x)-(2cos2(x)-1)
Step 2.3
Apply the distributive property.
2cos(x)(sin(x)+cos(x))1+2sin(x)cos(x)-(2cos2(x))--1
Step 2.4
Multiply 2 by -1.
2cos(x)(sin(x)+cos(x))1+2sin(x)cos(x)-2cos2(x)--1
Step 2.5
Multiply -1 by -1.
2cos(x)(sin(x)+cos(x))1+2sin(x)cos(x)-2cos2(x)+1
Step 2.6
Add 1 and 1.
2cos(x)(sin(x)+cos(x))2+2sin(x)cos(x)-2cos2(x)
Step 2.7
Factor 2 out of 2+2sin(x)cos(x)-2cos2(x).
Tap for more steps...
Step 2.7.1
Factor 2 out of 2.
2cos(x)(sin(x)+cos(x))2(1)+2sin(x)cos(x)-2cos2(x)
Step 2.7.2
Factor 2 out of 2sin(x)cos(x).
2cos(x)(sin(x)+cos(x))2(1)+2(sin(x)cos(x))-2cos2(x)
Step 2.7.3
Factor 2 out of -2cos2(x).
2cos(x)(sin(x)+cos(x))2(1)+2(sin(x)cos(x))+2(-cos2(x))
Step 2.7.4
Factor 2 out of 2(1)+2(sin(x)cos(x)).
2cos(x)(sin(x)+cos(x))2(1+sin(x)cos(x))+2(-cos2(x))
Step 2.7.5
Factor 2 out of 2(1+sin(x)cos(x))+2(-cos2(x)).
2cos(x)(sin(x)+cos(x))2(1+sin(x)cos(x)-cos2(x))
2cos(x)(sin(x)+cos(x))2(1+sin(x)cos(x)-cos2(x))
Step 2.8
Move -cos2(x).
2cos(x)(sin(x)+cos(x))2(1-cos2(x)+sin(x)cos(x))
Step 2.9
Apply pythagorean identity.
2cos(x)(sin(x)+cos(x))2(sin2(x)+sin(x)cos(x))
Step 2.10
Factor sin(x) out of sin2(x)+sin(x)cos(x).
Tap for more steps...
Step 2.10.1
Factor sin(x) out of sin2(x).
2cos(x)(sin(x)+cos(x))2(sin(x)sin(x)+sin(x)cos(x))
Step 2.10.2
Factor sin(x) out of sin(x)cos(x).
2cos(x)(sin(x)+cos(x))2(sin(x)sin(x)+sin(x)(cos(x)))
Step 2.10.3
Factor sin(x) out of sin(x)sin(x)+sin(x)(cos(x)).
2cos(x)(sin(x)+cos(x))2(sin(x)(sin(x)+cos(x)))
2cos(x)(sin(x)+cos(x))2sin(x)(sin(x)+cos(x))
2cos(x)(sin(x)+cos(x))2sin(x)(sin(x)+cos(x))
Step 3
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 3.1
Cancel the common factor of 2.
Tap for more steps...
Step 3.1.1
Cancel the common factor.
2cos(x)(sin(x)+cos(x))2sin(x)(sin(x)+cos(x))
Step 3.1.2
Rewrite the expression.
cos(x)(sin(x)+cos(x))sin(x)(sin(x)+cos(x))
cos(x)(sin(x)+cos(x))sin(x)(sin(x)+cos(x))
Step 3.2
Cancel the common factor of sin(x)+cos(x).
Tap for more steps...
Step 3.2.1
Cancel the common factor.
cos(x)(sin(x)+cos(x))sin(x)(sin(x)+cos(x))
Step 3.2.2
Rewrite the expression.
cos(x)sin(x)
cos(x)sin(x)
cos(x)sin(x)
Step 4
Convert from cos(x)sin(x) to cot(x).
cot(x)
 [x2  12  π  xdx ]