Enter a problem...
Trigonometry Examples
1+sin(2x)+cos(2x)1+sin(2x)-cos(2x)
Step 1
Step 1.1
Apply the sine double-angle identity.
1+2sin(x)cos(x)+cos(2x)1+sin(2x)-cos(2x)
Step 1.2
Use the double-angle identity to transform cos(2x) to 2cos2(x)-1.
1+2sin(x)cos(x)+2cos2(x)-11+sin(2x)-cos(2x)
Step 1.3
Subtract 1 from 1.
0+2sin(x)cos(x)+2cos2(x)1+sin(2x)-cos(2x)
Step 1.4
Add 0 and 2sin(x)cos(x).
2sin(x)cos(x)+2cos2(x)1+sin(2x)-cos(2x)
Step 1.5
Factor 2cos(x) out of 2sin(x)cos(x)+2cos2(x).
Step 1.5.1
Factor 2cos(x) out of 2sin(x)cos(x).
2cos(x)(sin(x))+2cos2(x)1+sin(2x)-cos(2x)
Step 1.5.2
Factor 2cos(x) out of 2cos2(x).
2cos(x)(sin(x))+2cos(x)(cos(x))1+sin(2x)-cos(2x)
Step 1.5.3
Factor 2cos(x) out of 2cos(x)(sin(x))+2cos(x)(cos(x)).
2cos(x)(sin(x)+cos(x))1+sin(2x)-cos(2x)
2cos(x)(sin(x)+cos(x))1+sin(2x)-cos(2x)
2cos(x)(sin(x)+cos(x))1+sin(2x)-cos(2x)
Step 2
Step 2.1
Apply the sine double-angle identity.
2cos(x)(sin(x)+cos(x))1+2sin(x)cos(x)-cos(2x)
Step 2.2
Use the double-angle identity to transform cos(2x) to 2cos2(x)-1.
2cos(x)(sin(x)+cos(x))1+2sin(x)cos(x)-(2cos2(x)-1)
Step 2.3
Apply the distributive property.
2cos(x)(sin(x)+cos(x))1+2sin(x)cos(x)-(2cos2(x))--1
Step 2.4
Multiply 2 by -1.
2cos(x)(sin(x)+cos(x))1+2sin(x)cos(x)-2cos2(x)--1
Step 2.5
Multiply -1 by -1.
2cos(x)(sin(x)+cos(x))1+2sin(x)cos(x)-2cos2(x)+1
Step 2.6
Add 1 and 1.
2cos(x)(sin(x)+cos(x))2+2sin(x)cos(x)-2cos2(x)
Step 2.7
Factor 2 out of 2+2sin(x)cos(x)-2cos2(x).
Step 2.7.1
Factor 2 out of 2.
2cos(x)(sin(x)+cos(x))2(1)+2sin(x)cos(x)-2cos2(x)
Step 2.7.2
Factor 2 out of 2sin(x)cos(x).
2cos(x)(sin(x)+cos(x))2(1)+2(sin(x)cos(x))-2cos2(x)
Step 2.7.3
Factor 2 out of -2cos2(x).
2cos(x)(sin(x)+cos(x))2(1)+2(sin(x)cos(x))+2(-cos2(x))
Step 2.7.4
Factor 2 out of 2(1)+2(sin(x)cos(x)).
2cos(x)(sin(x)+cos(x))2(1+sin(x)cos(x))+2(-cos2(x))
Step 2.7.5
Factor 2 out of 2(1+sin(x)cos(x))+2(-cos2(x)).
2cos(x)(sin(x)+cos(x))2(1+sin(x)cos(x)-cos2(x))
2cos(x)(sin(x)+cos(x))2(1+sin(x)cos(x)-cos2(x))
Step 2.8
Move -cos2(x).
2cos(x)(sin(x)+cos(x))2(1-cos2(x)+sin(x)cos(x))
Step 2.9
Apply pythagorean identity.
2cos(x)(sin(x)+cos(x))2(sin2(x)+sin(x)cos(x))
Step 2.10
Factor sin(x) out of sin2(x)+sin(x)cos(x).
Step 2.10.1
Factor sin(x) out of sin2(x).
2cos(x)(sin(x)+cos(x))2(sin(x)sin(x)+sin(x)cos(x))
Step 2.10.2
Factor sin(x) out of sin(x)cos(x).
2cos(x)(sin(x)+cos(x))2(sin(x)sin(x)+sin(x)(cos(x)))
Step 2.10.3
Factor sin(x) out of sin(x)sin(x)+sin(x)(cos(x)).
2cos(x)(sin(x)+cos(x))2(sin(x)(sin(x)+cos(x)))
2cos(x)(sin(x)+cos(x))2sin(x)(sin(x)+cos(x))
2cos(x)(sin(x)+cos(x))2sin(x)(sin(x)+cos(x))
Step 3
Step 3.1
Cancel the common factor of 2.
Step 3.1.1
Cancel the common factor.
2cos(x)(sin(x)+cos(x))2sin(x)(sin(x)+cos(x))
Step 3.1.2
Rewrite the expression.
cos(x)(sin(x)+cos(x))sin(x)(sin(x)+cos(x))
cos(x)(sin(x)+cos(x))sin(x)(sin(x)+cos(x))
Step 3.2
Cancel the common factor of sin(x)+cos(x).
Step 3.2.1
Cancel the common factor.
cos(x)(sin(x)+cos(x))sin(x)(sin(x)+cos(x))
Step 3.2.2
Rewrite the expression.
cos(x)sin(x)
cos(x)sin(x)
cos(x)sin(x)
Step 4
Convert from cos(x)sin(x) to cot(x).
cot(x)