Enter a problem...
Trigonometry Examples
sin(π3)-cos(π6)cos(π6)+cos(π3)sin(π3)−cos(π6)cos(π6)+cos(π3)
Step 1
Step 1.1
The exact value of sin(π3)sin(π3) is √32√32.
√32-cos(π6)cos(π6)+cos(π3)√32−cos(π6)cos(π6)+cos(π3)
Step 1.2
The exact value of cos(π6)cos(π6) is √32√32.
√32-√32cos(π6)+cos(π3)√32−√32cos(π6)+cos(π3)
Step 1.3
Combine the numerators over the common denominator.
√3-√32cos(π6)+cos(π3)√3−√32cos(π6)+cos(π3)
Step 1.4
Rewrite √3-√32√3−√32 in a factored form.
Step 1.4.1
Subtract √3√3 from √3√3.
02cos(π6)+cos(π3)02cos(π6)+cos(π3)
Step 1.4.2
Divide 00 by 22.
0cos(π6)+cos(π3)0cos(π6)+cos(π3)
0cos(π6)+cos(π3)0cos(π6)+cos(π3)
0cos(π6)+cos(π3)0cos(π6)+cos(π3)
Step 2
Step 2.1
The exact value of cos(π6)cos(π6) is √32√32.
0√32+cos(π3)0√32+cos(π3)
Step 2.2
The exact value of cos(π3)cos(π3) is 1212.
0√32+120√32+12
Step 2.3
Combine the numerators over the common denominator.
0√3+120√3+12
0√3+120√3+12
Step 3
Multiply the numerator by the reciprocal of the denominator.
02√3+1
Step 4
Multiply 2√3+1 by √3-1√3-1.
0(2√3+1⋅√3-1√3-1)
Step 5
Multiply 2√3+1 by √3-1√3-1.
02(√3-1)(√3+1)(√3-1)
Step 6
Expand the denominator using the FOIL method.
02(√3-1)√32+√3⋅-1+√3-1
Step 7
Simplify.
02(√3-1)2
Step 8
Step 8.1
Cancel the common factor.
02(√3-1)2
Step 8.2
Divide √3-1 by 1.
0(√3-1)
0(√3-1)
Step 9
Multiply 0 by √3-1.
0