Enter a problem...
Trigonometry Examples
tan(A)+tan(B)tan(A+B)+tan(A)-tan(B)tan(A-B)tan(A)+tan(B)tan(A+B)+tan(A)−tan(B)tan(A−B)
Step 1
Step 1.1
Apply the sum of angles identity.
tan(A)+tan(B)tan(A)+tan(B)1-tan(A)tan(B)+tan(A)-tan(B)tan(A-B)tan(A)+tan(B)tan(A)+tan(B)1−tan(A)tan(B)+tan(A)−tan(B)tan(A−B)
Step 1.2
Multiply the numerator by the reciprocal of the denominator.
(tan(A)+tan(B))1-tan(A)tan(B)tan(A)+tan(B)+tan(A)-tan(B)tan(A-B)(tan(A)+tan(B))1−tan(A)tan(B)tan(A)+tan(B)+tan(A)−tan(B)tan(A−B)
Step 1.3
Cancel the common factor of tan(A)+tan(B)tan(A)+tan(B).
Step 1.3.1
Cancel the common factor.
(tan(A)+tan(B))1-tan(A)tan(B)tan(A)+tan(B)+tan(A)-tan(B)tan(A-B)(tan(A)+tan(B))1−tan(A)tan(B)tan(A)+tan(B)+tan(A)−tan(B)tan(A−B)
Step 1.3.2
Rewrite the expression.
1-tan(A)tan(B)+tan(A)-tan(B)tan(A-B)1−tan(A)tan(B)+tan(A)−tan(B)tan(A−B)
1-tan(A)tan(B)+tan(A)-tan(B)tan(A-B)1−tan(A)tan(B)+tan(A)−tan(B)tan(A−B)
Step 1.4
Apply the difference of angles identity.
1-tan(A)tan(B)+tan(A)-tan(B)tan(A)-tan(B)1+tan(A)tan(B)1−tan(A)tan(B)+tan(A)−tan(B)tan(A)−tan(B)1+tan(A)tan(B)
Step 1.5
Multiply the numerator by the reciprocal of the denominator.
1-tan(A)tan(B)+(tan(A)-tan(B))1+tan(A)tan(B)tan(A)-tan(B)1−tan(A)tan(B)+(tan(A)−tan(B))1+tan(A)tan(B)tan(A)−tan(B)
Step 1.6
Cancel the common factor of tan(A)-tan(B)tan(A)−tan(B).
Step 1.6.1
Cancel the common factor.
1-tan(A)tan(B)+(tan(A)-tan(B))1+tan(A)tan(B)tan(A)-tan(B)1−tan(A)tan(B)+(tan(A)−tan(B))1+tan(A)tan(B)tan(A)−tan(B)
Step 1.6.2
Rewrite the expression.
1-tan(A)tan(B)+1+tan(A)tan(B)1−tan(A)tan(B)+1+tan(A)tan(B)
1-tan(A)tan(B)+1+tan(A)tan(B)1−tan(A)tan(B)+1+tan(A)tan(B)
1-tan(A)tan(B)+1+tan(A)tan(B)1−tan(A)tan(B)+1+tan(A)tan(B)
Step 2
Step 2.1
Combine the opposite terms in 1-tan(A)tan(B)+1+tan(A)tan(B)1−tan(A)tan(B)+1+tan(A)tan(B).
Step 2.1.1
Add -tan(A)tan(B)−tan(A)tan(B) and tan(A)tan(B)tan(A)tan(B).
1+0+11+0+1
Step 2.1.2
Add 11 and 00.
1+11+1
1+11+1
Step 2.2
Add 11 and 11.
22
22