Enter a problem...
Trigonometry Examples
sec(11π24)sec(11π24)
Step 1
Rewrite 11π24 as an angle where the values of the six trigonometric functions are known divided by 2.
sec(11π122)
Step 2
Apply the reciprocal identity to sec(11π122).
1cos(11π122)
Step 3
Apply the cosine half-angle identity cos(x2)=±√1+cos(x)2.
1±√1+cos(11π12)2
Step 4
Change the ± to + because secant is positive in the first quadrant.
1√1+cos(11π12)2
Step 5
Step 5.1
Simplify the numerator.
Step 5.1.1
The exact value of cos(11π12) is -√6+√24.
Step 5.1.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
1√1-cos(π12)2
Step 5.1.1.2
Split π12 into two angles where the values of the six trigonometric functions are known.
1√1-cos(π4-π6)2
Step 5.1.1.3
Apply the difference of angles identity cos(x-y)=cos(x)cos(y)+sin(x)sin(y).
1√1-(cos(π4)cos(π6)+sin(π4)sin(π6))2
Step 5.1.1.4
The exact value of cos(π4) is √22.
1√1-(√22cos(π6)+sin(π4)sin(π6))2
Step 5.1.1.5
The exact value of cos(π6) is √32.
1√1-(√22⋅√32+sin(π4)sin(π6))2
Step 5.1.1.6
The exact value of sin(π4) is √22.
1√1-(√22⋅√32+√22sin(π6))2
Step 5.1.1.7
The exact value of sin(π6) is 12.
1√1-(√22⋅√32+√22⋅12)2
Step 5.1.1.8
Simplify -(√22⋅√32+√22⋅12).
Step 5.1.1.8.1
Simplify each term.
Step 5.1.1.8.1.1
Multiply √22⋅√32.
Step 5.1.1.8.1.1.1
Multiply √22 by √32.
1√1-(√2√32⋅2+√22⋅12)2
Step 5.1.1.8.1.1.2
Combine using the product rule for radicals.
1√1-(√2⋅32⋅2+√22⋅12)2
Step 5.1.1.8.1.1.3
Multiply 2 by 3.
1√1-(√62⋅2+√22⋅12)2
Step 5.1.1.8.1.1.4
Multiply 2 by 2.
1√1-(√64+√22⋅12)2
1√1-(√64+√22⋅12)2
Step 5.1.1.8.1.2
Multiply √22⋅12.
Step 5.1.1.8.1.2.1
Multiply √22 by 12.
1√1-(√64+√22⋅2)2
Step 5.1.1.8.1.2.2
Multiply 2 by 2.
1√1-(√64+√24)2
1√1-(√64+√24)2
1√1-(√64+√24)2
Step 5.1.1.8.2
Combine the numerators over the common denominator.
1√1-√6+√242
1√1-√6+√242
1√1-√6+√242
Step 5.1.2
Write 1 as a fraction with a common denominator.
1√44-√6+√242
Step 5.1.3
Combine the numerators over the common denominator.
1√4-(√6+√2)42
Step 5.1.4
Apply the distributive property.
1√4-√6-√242
1√4-√6-√242
Step 5.2
Simplify the denominator.
Step 5.2.1
Multiply the numerator by the reciprocal of the denominator.
1√4-√6-√24⋅12
Step 5.2.2
Multiply 4-√6-√24⋅12.
Step 5.2.2.1
Multiply 4-√6-√24 by 12.
1√4-√6-√24⋅2
Step 5.2.2.2
Multiply 4 by 2.
1√4-√6-√28
1√4-√6-√28
Step 5.2.3
Rewrite √4-√6-√28 as √4-√6-√2√8.
1√4-√6-√2√8
Step 5.2.4
Simplify the denominator.
Step 5.2.4.1
Rewrite 8 as 22⋅2.
Step 5.2.4.1.1
Factor 4 out of 8.
1√4-√6-√2√4(2)
Step 5.2.4.1.2
Rewrite 4 as 22.
1√4-√6-√2√22⋅2
1√4-√6-√2√22⋅2
Step 5.2.4.2
Pull terms out from under the radical.
1√4-√6-√22√2
1√4-√6-√22√2
Step 5.2.5
Multiply √4-√6-√22√2 by √2√2.
1√4-√6-√22√2⋅√2√2
Step 5.2.6
Combine and simplify the denominator.
Step 5.2.6.1
Multiply √4-√6-√22√2 by √2√2.
1√4-√6-√2√22√2√2
Step 5.2.6.2
Move √2.
1√4-√6-√2√22(√2√2)
Step 5.2.6.3
Raise √2 to the power of 1.
1√4-√6-√2√22(√21√2)
Step 5.2.6.4
Raise √2 to the power of 1.
1√4-√6-√2√22(√21√21)
Step 5.2.6.5
Use the power rule aman=am+n to combine exponents.
1√4-√6-√2√22√21+1
Step 5.2.6.6
Add 1 and 1.
1√4-√6-√2√22√22
Step 5.2.6.7
Rewrite √22 as 2.
Step 5.2.6.7.1
Use n√ax=axn to rewrite √2 as 212.
1√4-√6-√2√22(212)2
Step 5.2.6.7.2
Apply the power rule and multiply exponents, (am)n=amn.
1√4-√6-√2√22⋅212⋅2
Step 5.2.6.7.3
Combine 12 and 2.
1√4-√6-√2√22⋅222
Step 5.2.6.7.4
Cancel the common factor of 2.
Step 5.2.6.7.4.1
Cancel the common factor.
1√4-√6-√2√22⋅222
Step 5.2.6.7.4.2
Rewrite the expression.
1√4-√6-√2√22⋅21
1√4-√6-√2√22⋅21
Step 5.2.6.7.5
Evaluate the exponent.
1√4-√6-√2√22⋅2
1√4-√6-√2√22⋅2
1√4-√6-√2√22⋅2
Step 5.2.7
Combine using the product rule for radicals.
1√(4-√6-√2)⋅22⋅2
Step 5.2.8
Multiply 2 by 2.
1√(4-√6-√2)⋅24
1√(4-√6-√2)⋅24
Step 5.3
Multiply the numerator by the reciprocal of the denominator.
14√(4-√6-√2)⋅2
Step 5.4
Multiply 4√(4-√6-√2)⋅2 by 1.
4√(4-√6-√2)⋅2
Step 5.5
Multiply 4√(4-√6-√2)⋅2 by √(4-√6-√2)⋅2√(4-√6-√2)⋅2.
4√(4-√6-√2)⋅2⋅√(4-√6-√2)⋅2√(4-√6-√2)⋅2
Step 5.6
Combine and simplify the denominator.
Step 5.6.1
Multiply 4√(4-√6-√2)⋅2 by √(4-√6-√2)⋅2√(4-√6-√2)⋅2.
4√(4-√6-√2)⋅2√(4-√6-√2)⋅2√(4-√6-√2)⋅2
Step 5.6.2
Raise √(4-√6-√2)⋅2 to the power of 1.
4√(4-√6-√2)⋅2√(4-√6-√2)⋅21√(4-√6-√2)⋅2
Step 5.6.3
Raise √(4-√6-√2)⋅2 to the power of 1.
4√(4-√6-√2)⋅2√(4-√6-√2)⋅21√(4-√6-√2)⋅21
Step 5.6.4
Use the power rule aman=am+n to combine exponents.
4√(4-√6-√2)⋅2√(4-√6-√2)⋅21+1
Step 5.6.5
Add 1 and 1.
4√(4-√6-√2)⋅2√(4-√6-√2)⋅22
Step 5.6.6
Rewrite √(4-√6-√2)⋅22 as (4-√6-√2)⋅2.
Step 5.6.6.1
Use n√ax=axn to rewrite √(4-√6-√2)⋅2 as ((4-√6-√2)⋅2)12.
4√(4-√6-√2)⋅2(((4-√6-√2)⋅2)12)2
Step 5.6.6.2
Apply the power rule and multiply exponents, (am)n=amn.
4√(4-√6-√2)⋅2((4-√6-√2)⋅2)12⋅2
Step 5.6.6.3
Combine 12 and 2.
4√(4-√6-√2)⋅2((4-√6-√2)⋅2)22
Step 5.6.6.4
Cancel the common factor of 2.
Step 5.6.6.4.1
Cancel the common factor.
4√(4-√6-√2)⋅2((4-√6-√2)⋅2)22
Step 5.6.6.4.2
Rewrite the expression.
4√(4-√6-√2)⋅2((4-√6-√2)⋅2)1
4√(4-√6-√2)⋅2((4-√6-√2)⋅2)1
Step 5.6.6.5
Simplify.
4√(4-√6-√2)⋅2(4-√6-√2)⋅2
4√(4-√6-√2)⋅2(4-√6-√2)⋅2
4√(4-√6-√2)⋅2(4-√6-√2)⋅2
Step 5.7
Cancel the common factor of 4 and 2.
Step 5.7.1
Factor 2 out of 4√(4-√6-√2)⋅2.
2(2√(4-√6-√2)⋅2)(4-√6-√2)⋅2
Step 5.7.2
Cancel the common factors.
Step 5.7.2.1
Factor 2 out of (4-√6-√2)⋅2.
2(2√(4-√6-√2)⋅2)2⋅(4-√6-√2)
Step 5.7.2.2
Cancel the common factor.
2(2√(4-√6-√2)⋅2)2⋅(4-√6-√2)
Step 5.7.2.3
Rewrite the expression.
2√(4-√6-√2)⋅24-√6-√2
2√(4-√6-√2)⋅24-√6-√2
2√(4-√6-√2)⋅24-√6-√2
Step 5.8
Simplify the numerator.
Step 5.8.1
Apply the distributive property.
2√4⋅2-√6⋅2-√2⋅24-√6-√2
Step 5.8.2
Simplify.
Step 5.8.2.1
Multiply 4 by 2.
2√8-√6⋅2-√2⋅24-√6-√2
Step 5.8.2.2
Multiply 2 by -1.
2√8-2√6-√2⋅24-√6-√2
Step 5.8.2.3
Multiply 2 by -1.
2√8-2√6-2√24-√6-√2
2√8-2√6-2√24-√6-√2
2√8-2√6-2√24-√6-√2
Step 5.9
Multiply 2√8-2√6-2√24-√6-√2 by 4-√6+√24-√6+√2.
2√8-2√6-2√24-√6-√2⋅4-√6+√24-√6+√2
Step 5.10
Multiply 2√8-2√6-2√24-√6-√2 by 4-√6+√24-√6+√2.
2√8-2√6-2√2(4-√6+√2)(4-√6-√2)(4-√6+√2)
Step 5.11
Expand the denominator using the FOIL method.
2√8-2√6-2√2(4-√6+√2)16-4√6+4√2-4√6+√62-√12-4√2+√12-√22
Step 5.12
Simplify.
2√8-2√6-2√2(4-√6+√2)20-8√6
Step 5.13
Cancel the common factor of 2 and 20-8√6.
Step 5.13.1
Factor 2 out of 2√8-2√6-2√2(4-√6+√2).
2(√8-2√6-2√2(4-√6+√2))20-8√6
Step 5.13.2
Cancel the common factors.
Step 5.13.2.1
Factor 2 out of 20.
2(√8-2√6-2√2(4-√6+√2))2⋅10-8√6
Step 5.13.2.2
Factor 2 out of -8√6.
2(√8-2√6-2√2(4-√6+√2))2⋅10+2(-4√6)
Step 5.13.2.3
Factor 2 out of 2(10)+2(-4√6).
2(√8-2√6-2√2(4-√6+√2))2(10-4√6)
Step 5.13.2.4
Cancel the common factor.
2(√8-2√6-2√2(4-√6+√2))2(10-4√6)
Step 5.13.2.5
Rewrite the expression.
√8-2√6-2√2(4-√6+√2)10-4√6
√8-2√6-2√2(4-√6+√2)10-4√6
√8-2√6-2√2(4-√6+√2)10-4√6
Step 5.14
Multiply √8-2√6-2√2(4-√6+√2)10-4√6 by 10+4√610+4√6.
√8-2√6-2√2(4-√6+√2)10-4√6⋅10+4√610+4√6
Step 5.15
Multiply √8-2√6-2√2(4-√6+√2)10-4√6 by 10+4√610+4√6.
√8-2√6-2√2(4-√6+√2)(10+4√6)(10-4√6)(10+4√6)
Step 5.16
Expand the denominator using the FOIL method.
√8-2√6-2√2(4-√6+√2)(10+4√6)100+40√6-40√6-16√62
Step 5.17
Simplify.
√8-2√6-2√2(4-√6+√2)(10+4√6)4
Step 5.18
Cancel the common factor of 10+4√6 and 4.
Step 5.18.1
Factor 2 out of √8-2√6-2√2(4-√6+√2)(10+4√6).
2(√8-2√6-2√2(4-√6+√2)(5+2√6))4
Step 5.18.2
Cancel the common factors.
Step 5.18.2.1
Factor 2 out of 4.
2(√8-2√6-2√2(4-√6+√2)(5+2√6))2(2)
Step 5.18.2.2
Cancel the common factor.
2(√8-2√6-2√2(4-√6+√2)(5+2√6))2⋅2
Step 5.18.2.3
Rewrite the expression.
√8-2√6-2√2(4-√6+√2)(5+2√6)2
√8-2√6-2√2(4-√6+√2)(5+2√6)2
√8-2√6-2√2(4-√6+√2)(5+2√6)2
Step 5.19
Group 5+2√6 and √8-2√6-2√2 together.
(5+2√6)√8-2√6-2√2(4-√6+√2)2
Step 5.20
Apply the distributive property.
(5√8-2√6-2√2+2√6√8-2√6-2√2)(4-√6+√2)2
Step 5.21
Combine using the product rule for radicals.
(5√8-2√6-2√2+2√(8-2√6-2√2)⋅6)(4-√6+√2)2
Step 5.22
Move 6 to the left of 8-2√6-2√2.
(5√8-2√6-2√2+2√6(8-2√6-2√2))(4-√6+√2)2
(5√8-2√6-2√2+2√6(8-2√6-2√2))(4-√6+√2)2
Step 6
The result can be shown in multiple forms.
Exact Form:
(5√8-2√6-2√2+2√6(8-2√6-2√2))(4-√6+√2)2
Decimal Form:
7.66129757…