Enter a problem...
Trigonometry Examples
csc(22π3)csc(22π3)
Step 1
Subtract full rotations of 2π2π until the angle is greater than or equal to 00 and less than 2π2π.
csc(4π3)csc(4π3)
Step 2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosecant is negative in the third quadrant.
-csc(π3)−csc(π3)
Step 3
The exact value of csc(π3)csc(π3) is 2√32√3.
-2√3−2√3
Step 4
Multiply 2√32√3 by √3√3√3√3.
-(2√3⋅√3√3)−(2√3⋅√3√3)
Step 5
Step 5.1
Multiply 2√32√3 by √3√3√3√3.
-2√3√3√3−2√3√3√3
Step 5.2
Raise √3√3 to the power of 11.
-2√3√31√3−2√3√31√3
Step 5.3
Raise √3√3 to the power of 11.
-2√3√31√31−2√3√31√31
Step 5.4
Use the power rule aman=am+naman=am+n to combine exponents.
-2√3√31+1−2√3√31+1
Step 5.5
Add 11 and 11.
-2√3√32−2√3√32
Step 5.6
Rewrite √32√32 as 33.
Step 5.6.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
-2√3(312)2−2√3(312)2
Step 5.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
-2√3312⋅2−2√3312⋅2
Step 5.6.3
Combine 1212 and 22.
-2√3322−2√3322
Step 5.6.4
Cancel the common factor of 22.
Step 5.6.4.1
Cancel the common factor.
-2√3322
Step 5.6.4.2
Rewrite the expression.
-2√331
-2√331
Step 5.6.5
Evaluate the exponent.
-2√33
-2√33
-2√33
Step 6
The result can be shown in multiple forms.
Exact Form:
-2√33
Decimal Form:
-1.15470053…