Trigonometry Examples

Find the Exact Value cot(-300)
cot(-300)cot(300)
Step 1
Rewrite -300300 as an angle where the values of the six trigonometric functions are known divided by 22.
cot(-6002)cot(6002)
Step 2
Apply the reciprocal identity.
1tan(-6002)1tan(6002)
Step 3
Apply the tangent half-angle identity.
1±1-cos(-600)1+cos(-600)1±1cos(600)1+cos(600)
Step 4
Change the ±± to ++ because cotangent is positive in the first quadrant.
11-cos(-600)1+cos(-600)11cos(600)1+cos(600)
Step 5
Simplify 11-cos(-600)1+cos(-600)11cos(600)1+cos(600).
Tap for more steps...
Step 5.1
Simplify the numerator.
Tap for more steps...
Step 5.1.1
Add full rotations of 360360° until the angle is between 00° and 360360°.
11-cos(120)1+cos(-600)11cos(120)1+cos(600)
Step 5.1.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
11--cos(60)1+cos(-600)11cos(60)1+cos(600)
Step 5.1.3
The exact value of cos(60)cos(60) is 1212.
11--121+cos(-600)11121+cos(600)
Step 5.1.4
Multiply --1212.
Tap for more steps...
Step 5.1.4.1
Multiply -11 by -11.
11+1(12)1+cos(-600)11+1(12)1+cos(600)
Step 5.1.4.2
Multiply 1212 by 11.
11+121+cos(-600)11+121+cos(600)
11+121+cos(-600)11+121+cos(600)
Step 5.1.5
Write 11 as a fraction with a common denominator.
122+121+cos(-600)122+121+cos(600)
Step 5.1.6
Combine the numerators over the common denominator.
12+121+cos(-600)
Step 5.1.7
Add 2 and 1.
1321+cos(-600)
1321+cos(-600)
Step 5.2
Simplify the denominator.
Tap for more steps...
Step 5.2.1
Add full rotations of 360° until the angle is between 0° and 360°.
1321+cos(120)
Step 5.2.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
1321-cos(60)
Step 5.2.3
The exact value of cos(60) is 12.
1321-12
Step 5.2.4
Write 1 as a fraction with a common denominator.
13222-12
Step 5.2.5
Combine the numerators over the common denominator.
1322-12
Step 5.2.6
Subtract 1 from 2.
13212
13212
Step 5.3
Simplify the denominator.
Tap for more steps...
Step 5.3.1
Multiply the numerator by the reciprocal of the denominator.
1322
Step 5.3.2
Cancel the common factor of 2.
Tap for more steps...
Step 5.3.2.1
Cancel the common factor.
1322
Step 5.3.2.2
Rewrite the expression.
13
13
13
Step 5.4
Multiply 13 by 33.
1333
Step 5.5
Combine and simplify the denominator.
Tap for more steps...
Step 5.5.1
Multiply 13 by 33.
333
Step 5.5.2
Raise 3 to the power of 1.
3313
Step 5.5.3
Raise 3 to the power of 1.
33131
Step 5.5.4
Use the power rule aman=am+n to combine exponents.
331+1
Step 5.5.5
Add 1 and 1.
332
Step 5.5.6
Rewrite 32 as 3.
Tap for more steps...
Step 5.5.6.1
Use nax=axn to rewrite 3 as 312.
3(312)2
Step 5.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
33122
Step 5.5.6.3
Combine 12 and 2.
3322
Step 5.5.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 5.5.6.4.1
Cancel the common factor.
3322
Step 5.5.6.4.2
Rewrite the expression.
331
331
Step 5.5.6.5
Evaluate the exponent.
33
33
33
33
Step 6
The result can be shown in multiple forms.
Exact Form:
33
Decimal Form:
0.57735026
 [x2  12  π  xdx ]