Enter a problem...
Trigonometry Examples
cot(-300)cot(−300)
Step 1
Rewrite -300−300 as an angle where the values of the six trigonometric functions are known divided by 22.
cot(-6002)cot(−6002)
Step 2
Apply the reciprocal identity.
1tan(-6002)1tan(−6002)
Step 3
Apply the tangent half-angle identity.
1±√1-cos(-600)1+cos(-600)1±√1−cos(−600)1+cos(−600)
Step 4
Change the ±± to ++ because cotangent is positive in the first quadrant.
1√1-cos(-600)1+cos(-600)1√1−cos(−600)1+cos(−600)
Step 5
Step 5.1
Simplify the numerator.
Step 5.1.1
Add full rotations of 360360° until the angle is between 00° and 360360°.
1√1-cos(120)1+cos(-600)1√1−cos(120)1+cos(−600)
Step 5.1.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
1√1--cos(60)1+cos(-600)1√1−−cos(60)1+cos(−600)
Step 5.1.3
The exact value of cos(60)cos(60) is 1212.
1√1--121+cos(-600)1√1−−121+cos(−600)
Step 5.1.4
Multiply --12−−12.
Step 5.1.4.1
Multiply -1−1 by -1−1.
1√1+1(12)1+cos(-600)1√1+1(12)1+cos(−600)
Step 5.1.4.2
Multiply 1212 by 11.
1√1+121+cos(-600)1√1+121+cos(−600)
1√1+121+cos(-600)1√1+121+cos(−600)
Step 5.1.5
Write 11 as a fraction with a common denominator.
1√22+121+cos(-600)1√22+121+cos(−600)
Step 5.1.6
Combine the numerators over the common denominator.
1√2+121+cos(-600)
Step 5.1.7
Add 2 and 1.
1√321+cos(-600)
1√321+cos(-600)
Step 5.2
Simplify the denominator.
Step 5.2.1
Add full rotations of 360° until the angle is between 0° and 360°.
1√321+cos(120)
Step 5.2.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
1√321-cos(60)
Step 5.2.3
The exact value of cos(60) is 12.
1√321-12
Step 5.2.4
Write 1 as a fraction with a common denominator.
1√3222-12
Step 5.2.5
Combine the numerators over the common denominator.
1√322-12
Step 5.2.6
Subtract 1 from 2.
1√3212
1√3212
Step 5.3
Simplify the denominator.
Step 5.3.1
Multiply the numerator by the reciprocal of the denominator.
1√32⋅2
Step 5.3.2
Cancel the common factor of 2.
Step 5.3.2.1
Cancel the common factor.
1√32⋅2
Step 5.3.2.2
Rewrite the expression.
1√3
1√3
1√3
Step 5.4
Multiply 1√3 by √3√3.
1√3⋅√3√3
Step 5.5
Combine and simplify the denominator.
Step 5.5.1
Multiply 1√3 by √3√3.
√3√3√3
Step 5.5.2
Raise √3 to the power of 1.
√3√31√3
Step 5.5.3
Raise √3 to the power of 1.
√3√31√31
Step 5.5.4
Use the power rule aman=am+n to combine exponents.
√3√31+1
Step 5.5.5
Add 1 and 1.
√3√32
Step 5.5.6
Rewrite √32 as 3.
Step 5.5.6.1
Use n√ax=axn to rewrite √3 as 312.
√3(312)2
Step 5.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
√3312⋅2
Step 5.5.6.3
Combine 12 and 2.
√3322
Step 5.5.6.4
Cancel the common factor of 2.
Step 5.5.6.4.1
Cancel the common factor.
√3322
Step 5.5.6.4.2
Rewrite the expression.
√331
√331
Step 5.5.6.5
Evaluate the exponent.
√33
√33
√33
√33
Step 6
The result can be shown in multiple forms.
Exact Form:
√33
Decimal Form:
0.57735026…