Trigonometry Examples

Find the Exact Value cos(arcsin(2/x))
cos(arcsin(2x))cos(arcsin(2x))
Step 1
Write the expression using exponents.
Tap for more steps...
Step 1.1
Draw a triangle in the plane with vertices (12-(2x)2,2x)12(2x)2,2x, (12-(2x)2,0)12(2x)2,0, and the origin. Then arcsin(2x)arcsin(2x) is the angle between the positive x-axis and the ray beginning at the origin and passing through (12-(2x)2,2x)12(2x)2,2x. Therefore, cos(arcsin(2x))cos(arcsin(2x)) is 1-(2x)21(2x)2.
1-(2x)21(2x)2
Step 1.2
Rewrite 11 as 1212.
12-(2x)212(2x)2
12-(2x)212(2x)2
Step 2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=1a=1 and b=2xb=2x.
(1+2x)(1-2x)(1+2x)(12x)
Step 3
Simplify terms.
Tap for more steps...
Step 3.1
Write 11 as a fraction with a common denominator.
(xx+2x)(1-2x)(xx+2x)(12x)
Step 3.2
Combine the numerators over the common denominator.
x+2x(1-2x)x+2x(12x)
Step 3.3
Write 11 as a fraction with a common denominator.
x+2x(xx-2x)x+2x(xx2x)
Step 3.4
Combine the numerators over the common denominator.
x+2xx-2xx+2xx2x
Step 3.5
Multiply x+2xx+2x by x-2xx2x.
(x+2)(x-2)xx(x+2)(x2)xx
Step 3.6
Multiply x by x.
(x+2)(x-2)x2
(x+2)(x-2)x2
Step 4
Rewrite (x+2)(x-2)x2 as (1x)2((x+2)(x-2)).
Tap for more steps...
Step 4.1
Factor the perfect power 12 out of (x+2)(x-2).
12((x+2)(x-2))x2
Step 4.2
Factor the perfect power x2 out of x2.
12((x+2)(x-2))x21
Step 4.3
Rearrange the fraction 12((x+2)(x-2))x21.
(1x)2((x+2)(x-2))
(1x)2((x+2)(x-2))
Step 5
Pull terms out from under the radical.
1x(x+2)(x-2)
Step 6
Combine 1x and (x+2)(x-2).
(x+2)(x-2)x
 [x2  12  π  xdx ]