Enter a problem...
Trigonometry Examples
cos(arcsin(2x))cos(arcsin(2x))
Step 1
Step 1.1
Draw a triangle in the plane with vertices (√12-(2x)2,2x)⎛⎝√12−(2x)2,2x⎞⎠, (√12-(2x)2,0)⎛⎝√12−(2x)2,0⎞⎠, and the origin. Then arcsin(2x)arcsin(2x) is the angle between the positive x-axis and the ray beginning at the origin and passing through (√12-(2x)2,2x)⎛⎝√12−(2x)2,2x⎞⎠. Therefore, cos(arcsin(2x))cos(arcsin(2x)) is √1-(2x)2√1−(2x)2.
√1-(2x)2√1−(2x)2
Step 1.2
Rewrite 11 as 1212.
√12-(2x)2√12−(2x)2
√12-(2x)2√12−(2x)2
Step 2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=1a=1 and b=2xb=2x.
√(1+2x)(1-2x)√(1+2x)(1−2x)
Step 3
Step 3.1
Write 11 as a fraction with a common denominator.
√(xx+2x)(1-2x)√(xx+2x)(1−2x)
Step 3.2
Combine the numerators over the common denominator.
√x+2x(1-2x)√x+2x(1−2x)
Step 3.3
Write 11 as a fraction with a common denominator.
√x+2x(xx-2x)√x+2x(xx−2x)
Step 3.4
Combine the numerators over the common denominator.
√x+2x⋅x-2x√x+2x⋅x−2x
Step 3.5
Multiply x+2xx+2x by x-2xx−2x.
√(x+2)(x-2)x⋅x√(x+2)(x−2)x⋅x
Step 3.6
Multiply x by x.
√(x+2)(x-2)x2
√(x+2)(x-2)x2
Step 4
Step 4.1
Factor the perfect power 12 out of (x+2)(x-2).
√12((x+2)(x-2))x2
Step 4.2
Factor the perfect power x2 out of x2.
√12((x+2)(x-2))x2⋅1
Step 4.3
Rearrange the fraction 12((x+2)(x-2))x2⋅1.
√(1x)2((x+2)(x-2))
√(1x)2((x+2)(x-2))
Step 5
Pull terms out from under the radical.
1x√(x+2)(x-2)
Step 6
Combine 1x and √(x+2)(x-2).
√(x+2)(x-2)x