Trigonometry Examples

Evaluate arcsin(sin((11pi)/8))
arcsin(sin(11π8))
Step 1
Rewrite 11π8 as an angle where the values of the six trigonometric functions are known divided by 2.
arcsin(sin(11π42))
Step 2
Apply the sine half-angle identity.
arcsin(±1-cos(11π4)2)
Step 3
Change the ± to - because sine is negative in the third quadrant.
arcsin(-1-cos(11π4)2)
Step 4
Simplify -1-cos(11π4)2.
Tap for more steps...
Step 4.1
Subtract full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
arcsin(-1-cos(3π4)2)
Step 4.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
arcsin(-1--cos(π4)2)
Step 4.3
The exact value of cos(π4) is 22.
arcsin(-1--222)
Step 4.4
Multiply --22.
Tap for more steps...
Step 4.4.1
Multiply -1 by -1.
arcsin(-1+1222)
Step 4.4.2
Multiply 22 by 1.
arcsin(-1+222)
arcsin(-1+222)
Step 4.5
Write 1 as a fraction with a common denominator.
arcsin(-22+222)
Step 4.6
Combine the numerators over the common denominator.
arcsin(-2+222)
Step 4.7
Multiply the numerator by the reciprocal of the denominator.
arcsin(-2+2212)
Step 4.8
Multiply 2+2212.
Tap for more steps...
Step 4.8.1
Multiply 2+22 by 12.
arcsin(-2+222)
Step 4.8.2
Multiply 2 by 2.
arcsin(-2+24)
arcsin(-2+24)
Step 4.9
Rewrite 2+24 as 2+24.
arcsin(-2+24)
Step 4.10
Simplify the denominator.
Tap for more steps...
Step 4.10.1
Rewrite 4 as 22.
arcsin(-2+222)
Step 4.10.2
Pull terms out from under the radical, assuming positive real numbers.
arcsin(-2+22)
arcsin(-2+22)
arcsin(-2+22)
Step 5
The result can be shown in multiple forms.
Exact Form:
arcsin(-2+22)
Decimal Form:
-1.17809724
 [x2  12  π  xdx ]