Trigonometry Examples

Find the Exact Value tan(165)
tan(165)tan(165)
Step 1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
-tan(15)tan(15)
Step 2
Split 1515 into two angles where the values of the six trigonometric functions are known.
-tan(45-30)tan(4530)
Step 3
Separate negation.
-tan(45-(30))tan(45(30))
Step 4
Apply the difference of angles identity.
-tan(45)-tan(30)1+tan(45)tan(30)tan(45)tan(30)1+tan(45)tan(30)
Step 5
The exact value of tan(45)tan(45) is 11.
-1-tan(30)1+tan(45)tan(30)1tan(30)1+tan(45)tan(30)
Step 6
The exact value of tan(30)tan(30) is 3333.
-1-331+tan(45)tan(30)1331+tan(45)tan(30)
Step 7
The exact value of tan(45)tan(45) is 11.
-1-331+1tan(30)1331+1tan(30)
Step 8
The exact value of tan(30)tan(30) is 3333.
-1-331+1331331+133
Step 9
Simplify -1-331+1331331+133.
Tap for more steps...
Step 9.1
Multiply the numerator and denominator of the fraction by 33.
Tap for more steps...
Step 9.1.1
Multiply 1-331+1331331+133 by 3333.
-(331-331+133)331331+133
Step 9.1.2
Combine.
-3(1-33)3(1+133)3(133)3(1+133)
-3(1-33)3(1+133)3(133)3(1+133)
Step 9.2
Apply the distributive property.
-31+3(-33)31+3(133)31+3(33)31+3(133)
Step 9.3
Cancel the common factor of 33.
Tap for more steps...
Step 9.3.1
Move the leading negative in -3333 into the numerator.
-31+3-3331+3(133)31+33331+3(133)
Step 9.3.2
Cancel the common factor.
-31+3-3331+3(133)31+33331+3(133)
Step 9.3.3
Rewrite the expression.
-31-331+3(133)31331+3(133)
-31-331+3(133)31331+3(133)
Step 9.4
Multiply 33 by 11.
-3-331+31333331+3133
Step 9.5
Simplify the denominator.
Tap for more steps...
Step 9.5.1
Multiply 33 by 11.
-3-33+3133333+3133
Step 9.5.2
Cancel the common factor of 33.
Tap for more steps...
Step 9.5.2.1
Factor 33 out of 3131.
-3-33+3(1)33333+3(1)33
Step 9.5.2.2
Cancel the common factor.
-3-33+3133333+3133
Step 9.5.2.3
Rewrite the expression.
-3-33+3333+3
-3-33+3333+3
-3-33+3333+3
Step 9.6
Multiply 3-33+3333+3 by 3-33-33333.
-(3-33+33-33-3)(333+33333)
Step 9.7
Multiply 3-33+3333+3 by 3-33-33333.
-(3-3)(3-3)(3+3)(3-3)(33)(33)(3+3)(33)
Step 9.8
Expand the denominator using the FOIL method.
-(3-3)(3-3)9-33+33-32(33)(33)933+3332
Step 9.9
Simplify.
-(3-3)(3-3)6(33)(33)6
Step 9.10
Simplify the numerator.
Tap for more steps...
Step 9.10.1
Raise 3-333 to the power of 11.
-(3-3)1(3-3)6(33)1(33)6
Step 9.10.2
Raise 3-333 to the power of 11.
-(3-3)1(3-3)16(33)1(33)16
Step 9.10.3
Use the power rule aman=am+naman=am+n to combine exponents.
-(3-3)1+16(33)1+16
Step 9.10.4
Add 11 and 11.
-(3-3)26(33)26
-(3-3)26(33)26
Step 9.11
Rewrite (3-3)2(33)2 as (3-3)(3-3)(33)(33).
-(3-3)(3-3)6(33)(33)6
Step 9.12
Expand (3-3)(3-3)(33)(33) using the FOIL Method.
Tap for more steps...
Step 9.12.1
Apply the distributive property.
-3(3-3)-3(3-3)63(33)3(33)6
Step 9.12.2
Apply the distributive property.
-33+3(-3)-3(3-3)633+3(3)3(33)6
Step 9.12.3
Apply the distributive property.
-33+3(-3)-33-3(-3)633+3(3)333(3)6
-33+3(-3)-33-3(-3)633+3(3)333(3)6
Step 9.13
Simplify and combine like terms.
Tap for more steps...
Step 9.13.1
Simplify each term.
Tap for more steps...
Step 9.13.1.1
Multiply 33 by 33.
-9+3(-3)-33-3(-3)69+3(3)333(3)6
Step 9.13.1.2
Multiply -11 by 33.
-9-33-33-3(-3)6933333(3)6
Step 9.13.1.3
Multiply 33 by -11.
-9-33-33-3(-3)6933333(3)6
Step 9.13.1.4
Multiply -3(-3)3(3).
Tap for more steps...
Step 9.13.1.4.1
Multiply -11 by -11.
-9-33-33+133693333+1336
Step 9.13.1.4.2
Multiply 33 by 11.
-9-33-33+33693333+336
Step 9.13.1.4.3
Raise 33 to the power of 11.
-9-33-33+313693333+3136
Step 9.13.1.4.4
Raise 33 to the power of 11.
-9-33-33+3131693333+31316
Step 9.13.1.4.5
Use the power rule aman=am+naman=am+n to combine exponents.
-9-33-33+31+1693333+31+16
Step 9.13.1.4.6
Add 11 and 11.
-9-33-33+32693333+326
-9-33-33+32693333+326
Step 9.13.1.5
Rewrite 3232 as 33.
Tap for more steps...
Step 9.13.1.5.1
Use nax=axnnax=axn to rewrite 33 as 312312.
-9-33-33+(312)2693333+(312)26
Step 9.13.1.5.2
Apply the power rule and multiply exponents, (am)n=amn.
-9-33-33+31226
Step 9.13.1.5.3
Combine 12 and 2.
-9-33-33+3226
Step 9.13.1.5.4
Cancel the common factor of 2.
Tap for more steps...
Step 9.13.1.5.4.1
Cancel the common factor.
-9-33-33+3226
Step 9.13.1.5.4.2
Rewrite the expression.
-9-33-33+316
-9-33-33+316
Step 9.13.1.5.5
Evaluate the exponent.
-9-33-33+36
-9-33-33+36
-9-33-33+36
Step 9.13.2
Add 9 and 3.
-12-33-336
Step 9.13.3
Subtract 33 from -33.
-12-636
-12-636
Step 9.14
Cancel the common factor of 12-63 and 6.
Tap for more steps...
Step 9.14.1
Factor 6 out of 12.
-62-636
Step 9.14.2
Factor 6 out of -63.
-62+6(-3)6
Step 9.14.3
Factor 6 out of 6(2)+6(-3).
-6(2-3)6
Step 9.14.4
Cancel the common factors.
Tap for more steps...
Step 9.14.4.1
Factor 6 out of 6.
-6(2-3)6(1)
Step 9.14.4.2
Cancel the common factor.
-6(2-3)61
Step 9.14.4.3
Rewrite the expression.
-2-31
Step 9.14.4.4
Divide 2-3 by 1.
-(2-3)
-(2-3)
-(2-3)
Step 9.15
Apply the distributive property.
-12--3
Step 9.16
Multiply -1 by 2.
-2--3
Step 9.17
Multiply --3.
Tap for more steps...
Step 9.17.1
Multiply -1 by -1.
-2+13
Step 9.17.2
Multiply 3 by 1.
-2+3
-2+3
-2+3
Step 10
The result can be shown in multiple forms.
Exact Form:
-2+3
Decimal Form:
-0.26794919
 [x2  12  π  xdx ]