Enter a problem...
Trigonometry Examples
tan(165)tan(165)
Step 1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
-tan(15)−tan(15)
Step 2
Split 1515 into two angles where the values of the six trigonometric functions are known.
-tan(45-30)−tan(45−30)
Step 3
Separate negation.
-tan(45-(30))−tan(45−(30))
Step 4
Apply the difference of angles identity.
-tan(45)-tan(30)1+tan(45)tan(30)−tan(45)−tan(30)1+tan(45)tan(30)
Step 5
The exact value of tan(45)tan(45) is 11.
-1-tan(30)1+tan(45)tan(30)−1−tan(30)1+tan(45)tan(30)
Step 6
The exact value of tan(30)tan(30) is √33√33.
-1-√331+tan(45)tan(30)−1−√331+tan(45)tan(30)
Step 7
The exact value of tan(45)tan(45) is 11.
-1-√331+1tan(30)−1−√331+1tan(30)
Step 8
The exact value of tan(30)tan(30) is √33√33.
-1-√331+1√33−1−√331+1√33
Step 9
Step 9.1
Multiply the numerator and denominator of the fraction by 33.
Step 9.1.1
Multiply 1-√331+1√331−√331+1√33 by 3333.
-(33⋅1-√331+1√33)−⎛⎜⎝33⋅1−√331+1√33⎞⎟⎠
Step 9.1.2
Combine.
-3(1-√33)3(1+1√33)−3(1−√33)3(1+1√33)
-3(1-√33)3(1+1√33)−3(1−√33)3(1+1√33)
Step 9.2
Apply the distributive property.
-3⋅1+3(-√33)3⋅1+3(1√33)−3⋅1+3(−√33)3⋅1+3(1√33)
Step 9.3
Cancel the common factor of 33.
Step 9.3.1
Move the leading negative in -√33−√33 into the numerator.
-3⋅1+3-√333⋅1+3(1√33)−3⋅1+3−√333⋅1+3(1√33)
Step 9.3.2
Cancel the common factor.
-3⋅1+3-√333⋅1+3(1√33)−3⋅1+3−√333⋅1+3(1√33)
Step 9.3.3
Rewrite the expression.
-3⋅1-√33⋅1+3(1√33)−3⋅1−√33⋅1+3(1√33)
-3⋅1-√33⋅1+3(1√33)−3⋅1−√33⋅1+3(1√33)
Step 9.4
Multiply 33 by 11.
-3-√33⋅1+3⋅1√33−3−√33⋅1+3⋅1√33
Step 9.5
Simplify the denominator.
Step 9.5.1
Multiply 33 by 11.
-3-√33+3⋅1√33−3−√33+3⋅1√33
Step 9.5.2
Cancel the common factor of 33.
Step 9.5.2.1
Factor 33 out of 3⋅13⋅1.
-3-√33+3(1)√33−3−√33+3(1)√33
Step 9.5.2.2
Cancel the common factor.
-3-√33+3⋅1√33−3−√33+3⋅1√33
Step 9.5.2.3
Rewrite the expression.
-3-√33+√3−3−√33+√3
-3-√33+√3−3−√33+√3
-3-√33+√3−3−√33+√3
Step 9.6
Multiply 3-√33+√33−√33+√3 by 3-√33-√33−√33−√3.
-(3-√33+√3⋅3-√33-√3)−(3−√33+√3⋅3−√33−√3)
Step 9.7
Multiply 3-√33+√33−√33+√3 by 3-√33-√33−√33−√3.
-(3-√3)(3-√3)(3+√3)(3-√3)−(3−√3)(3−√3)(3+√3)(3−√3)
Step 9.8
Expand the denominator using the FOIL method.
-(3-√3)(3-√3)9-3√3+√3⋅3-√32−(3−√3)(3−√3)9−3√3+√3⋅3−√32
Step 9.9
Simplify.
-(3-√3)(3-√3)6−(3−√3)(3−√3)6
Step 9.10
Simplify the numerator.
Step 9.10.1
Raise 3-√33−√3 to the power of 11.
-(3-√3)1(3-√3)6−(3−√3)1(3−√3)6
Step 9.10.2
Raise 3-√33−√3 to the power of 11.
-(3-√3)1(3-√3)16−(3−√3)1(3−√3)16
Step 9.10.3
Use the power rule aman=am+naman=am+n to combine exponents.
-(3-√3)1+16−(3−√3)1+16
Step 9.10.4
Add 11 and 11.
-(3-√3)26−(3−√3)26
-(3-√3)26−(3−√3)26
Step 9.11
Rewrite (3-√3)2(3−√3)2 as (3-√3)(3-√3)(3−√3)(3−√3).
-(3-√3)(3-√3)6−(3−√3)(3−√3)6
Step 9.12
Expand (3-√3)(3-√3)(3−√3)(3−√3) using the FOIL Method.
Step 9.12.1
Apply the distributive property.
-3(3-√3)-√3(3-√3)6−3(3−√3)−√3(3−√3)6
Step 9.12.2
Apply the distributive property.
-3⋅3+3(-√3)-√3(3-√3)6−3⋅3+3(−√3)−√3(3−√3)6
Step 9.12.3
Apply the distributive property.
-3⋅3+3(-√3)-√3⋅3-√3(-√3)6−3⋅3+3(−√3)−√3⋅3−√3(−√3)6
-3⋅3+3(-√3)-√3⋅3-√3(-√3)6−3⋅3+3(−√3)−√3⋅3−√3(−√3)6
Step 9.13
Simplify and combine like terms.
Step 9.13.1
Simplify each term.
Step 9.13.1.1
Multiply 33 by 33.
-9+3(-√3)-√3⋅3-√3(-√3)6−9+3(−√3)−√3⋅3−√3(−√3)6
Step 9.13.1.2
Multiply -1−1 by 33.
-9-3√3-√3⋅3-√3(-√3)6−9−3√3−√3⋅3−√3(−√3)6
Step 9.13.1.3
Multiply 33 by -1−1.
-9-3√3-3√3-√3(-√3)6−9−3√3−3√3−√3(−√3)6
Step 9.13.1.4
Multiply -√3(-√3)−√3(−√3).
Step 9.13.1.4.1
Multiply -1−1 by -1−1.
-9-3√3-3√3+1√3√36−9−3√3−3√3+1√3√36
Step 9.13.1.4.2
Multiply √3√3 by 11.
-9-3√3-3√3+√3√36−9−3√3−3√3+√3√36
Step 9.13.1.4.3
Raise √3√3 to the power of 11.
-9-3√3-3√3+√31√36−9−3√3−3√3+√31√36
Step 9.13.1.4.4
Raise √3√3 to the power of 11.
-9-3√3-3√3+√31√316−9−3√3−3√3+√31√316
Step 9.13.1.4.5
Use the power rule aman=am+naman=am+n to combine exponents.
-9-3√3-3√3+√31+16−9−3√3−3√3+√31+16
Step 9.13.1.4.6
Add 11 and 11.
-9-3√3-3√3+√326−9−3√3−3√3+√326
-9-3√3-3√3+√326−9−3√3−3√3+√326
Step 9.13.1.5
Rewrite √32√32 as 33.
Step 9.13.1.5.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
-9-3√3-3√3+(312)26−9−3√3−3√3+(312)26
Step 9.13.1.5.2
Apply the power rule and multiply exponents, (am)n=amn.
-9-3√3-3√3+312⋅26
Step 9.13.1.5.3
Combine 12 and 2.
-9-3√3-3√3+3226
Step 9.13.1.5.4
Cancel the common factor of 2.
Step 9.13.1.5.4.1
Cancel the common factor.
-9-3√3-3√3+3226
Step 9.13.1.5.4.2
Rewrite the expression.
-9-3√3-3√3+316
-9-3√3-3√3+316
Step 9.13.1.5.5
Evaluate the exponent.
-9-3√3-3√3+36
-9-3√3-3√3+36
-9-3√3-3√3+36
Step 9.13.2
Add 9 and 3.
-12-3√3-3√36
Step 9.13.3
Subtract 3√3 from -3√3.
-12-6√36
-12-6√36
Step 9.14
Cancel the common factor of 12-6√3 and 6.
Step 9.14.1
Factor 6 out of 12.
-6⋅2-6√36
Step 9.14.2
Factor 6 out of -6√3.
-6⋅2+6(-√3)6
Step 9.14.3
Factor 6 out of 6(2)+6(-√3).
-6(2-√3)6
Step 9.14.4
Cancel the common factors.
Step 9.14.4.1
Factor 6 out of 6.
-6(2-√3)6(1)
Step 9.14.4.2
Cancel the common factor.
-6(2-√3)6⋅1
Step 9.14.4.3
Rewrite the expression.
-2-√31
Step 9.14.4.4
Divide 2-√3 by 1.
-(2-√3)
-(2-√3)
-(2-√3)
Step 9.15
Apply the distributive property.
-1⋅2--√3
Step 9.16
Multiply -1 by 2.
-2--√3
Step 9.17
Multiply --√3.
Step 9.17.1
Multiply -1 by -1.
-2+1√3
Step 9.17.2
Multiply √3 by 1.
-2+√3
-2+√3
-2+√3
Step 10
The result can be shown in multiple forms.
Exact Form:
-2+√3
Decimal Form:
-0.26794919…