Enter a problem...
Trigonometry Examples
Step 1
Multiply both sides by .
Step 2
Step 2.1
Simplify the left side.
Step 2.1.1
Cancel the common factor of .
Step 2.1.1.1
Cancel the common factor.
Step 2.1.1.2
Rewrite the expression.
Step 2.2
Simplify the right side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Rewrite in terms of sines and cosines.
Step 2.2.1.1.2
Rewrite in terms of sines and cosines.
Step 2.2.1.2
Apply the distributive property.
Step 2.2.1.3
Multiply .
Step 2.2.1.3.1
Combine and .
Step 2.2.1.3.2
Raise to the power of .
Step 2.2.1.3.3
Raise to the power of .
Step 2.2.1.3.4
Use the power rule to combine exponents.
Step 2.2.1.3.5
Add and .
Step 2.2.1.4
Cancel the common factor of .
Step 2.2.1.4.1
Cancel the common factor.
Step 2.2.1.4.2
Rewrite the expression.
Step 2.2.1.5
Simplify each term.
Step 2.2.1.5.1
Factor out of .
Step 2.2.1.5.2
Separate fractions.
Step 2.2.1.5.3
Convert from to .
Step 2.2.1.5.4
Divide by .
Step 3
Step 3.1
Simplify the left side.
Step 3.1.1
Rewrite in terms of sines and cosines.
Step 3.2
Simplify the right side.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Rewrite in terms of sines and cosines.
Step 3.2.1.2
Multiply .
Step 3.2.1.2.1
Combine and .
Step 3.2.1.2.2
Raise to the power of .
Step 3.2.1.2.3
Raise to the power of .
Step 3.2.1.2.4
Use the power rule to combine exponents.
Step 3.2.1.2.5
Add and .
Step 3.3
Multiply both sides of the equation by .
Step 3.4
Cancel the common factor of .
Step 3.4.1
Cancel the common factor.
Step 3.4.2
Rewrite the expression.
Step 3.5
Apply the distributive property.
Step 3.6
Cancel the common factor of .
Step 3.6.1
Cancel the common factor.
Step 3.6.2
Rewrite the expression.
Step 3.7
Multiply .
Step 3.7.1
Raise to the power of .
Step 3.7.2
Raise to the power of .
Step 3.7.3
Use the power rule to combine exponents.
Step 3.7.4
Add and .
Step 3.8
Apply pythagorean identity.
Step 3.9
Since , the equation will always be true for any value of .
All real numbers
All real numbers
Step 4
The result can be shown in multiple forms.
All real numbers
Interval Notation: