Enter a problem...
Trigonometry Examples
cos(x)tan(x)-sin(x)cot(x)=0cos(x)tan(x)−sin(x)cot(x)=0
Step 1
Set the numerator equal to zero.
cos(x)tan(x)-sin(x)=0cos(x)tan(x)−sin(x)=0
Step 2
Step 2.1
Divide each term in the equation by cos(x)cos(x).
cos(x)tan(x)cos(x)+-sin(x)cos(x)=0cos(x)cos(x)tan(x)cos(x)+−sin(x)cos(x)=0cos(x)
Step 2.2
Cancel the common factor of cos(x)cos(x).
Step 2.2.1
Cancel the common factor.
cos(x)tan(x)cos(x)+-sin(x)cos(x)=0cos(x)
Step 2.2.2
Divide tan(x) by 1.
tan(x)+-sin(x)cos(x)=0cos(x)
tan(x)+-sin(x)cos(x)=0cos(x)
Step 2.3
Rewrite tan(x) in terms of sines and cosines.
sin(x)cos(x)+-sin(x)cos(x)=0cos(x)
Step 2.4
Convert from sin(x)cos(x) to tan(x).
tan(x)+-sin(x)cos(x)=0cos(x)
Step 2.5
Separate fractions.
tan(x)+-11⋅sin(x)cos(x)=0cos(x)
Step 2.6
Convert from sin(x)cos(x) to tan(x).
tan(x)+-11⋅tan(x)=0cos(x)
Step 2.7
Divide -1 by 1.
tan(x)-tan(x)=0cos(x)
Step 2.8
Separate fractions.
tan(x)-tan(x)=01⋅1cos(x)
Step 2.9
Convert from 1cos(x) to sec(x).
tan(x)-tan(x)=01⋅sec(x)
Step 2.10
Divide 0 by 1.
tan(x)-tan(x)=0sec(x)
Step 2.11
Multiply 0 by sec(x).
tan(x)-tan(x)=0
Step 2.12
Subtract tan(x) from tan(x).
0=0
Step 2.13
Since 0=0, the equation will always be true for any value of x.
All real numbers
All real numbers
Step 3
The result can be shown in multiple forms.
All real numbers
Interval Notation:
(-∞,∞)