Trigonometry Examples

Solve for x cot(x/2-pi/3)=1
Step 1
Take the inverse cotangent of both sides of the equation to extract from inside the cotangent.
Step 2
Simplify the right side.
Tap for more steps...
Step 2.1
The exact value of is .
Step 3
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 3.1
Add to both sides of the equation.
Step 3.2
To write as a fraction with a common denominator, multiply by .
Step 3.3
To write as a fraction with a common denominator, multiply by .
Step 3.4
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 3.4.1
Multiply by .
Step 3.4.2
Multiply by .
Step 3.4.3
Multiply by .
Step 3.4.4
Multiply by .
Step 3.5
Combine the numerators over the common denominator.
Step 3.6
Simplify the numerator.
Tap for more steps...
Step 3.6.1
Move to the left of .
Step 3.6.2
Move to the left of .
Step 3.6.3
Add and .
Step 4
Multiply both sides of the equation by .
Step 5
Simplify both sides of the equation.
Tap for more steps...
Step 5.1
Simplify the left side.
Tap for more steps...
Step 5.1.1
Cancel the common factor of .
Tap for more steps...
Step 5.1.1.1
Cancel the common factor.
Step 5.1.1.2
Rewrite the expression.
Step 5.2
Simplify the right side.
Tap for more steps...
Step 5.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.2.1.1
Factor out of .
Step 5.2.1.2
Cancel the common factor.
Step 5.2.1.3
Rewrite the expression.
Step 6
The cotangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from to find the solution in the fourth quadrant.
Step 7
Solve for .
Tap for more steps...
Step 7.1
Simplify .
Tap for more steps...
Step 7.1.1
To write as a fraction with a common denominator, multiply by .
Step 7.1.2
Combine fractions.
Tap for more steps...
Step 7.1.2.1
Combine and .
Step 7.1.2.2
Combine the numerators over the common denominator.
Step 7.1.3
Simplify the numerator.
Tap for more steps...
Step 7.1.3.1
Move to the left of .
Step 7.1.3.2
Add and .
Step 7.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 7.2.1
Add to both sides of the equation.
Step 7.2.2
To write as a fraction with a common denominator, multiply by .
Step 7.2.3
To write as a fraction with a common denominator, multiply by .
Step 7.2.4
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 7.2.4.1
Multiply by .
Step 7.2.4.2
Multiply by .
Step 7.2.4.3
Multiply by .
Step 7.2.4.4
Multiply by .
Step 7.2.5
Combine the numerators over the common denominator.
Step 7.2.6
Simplify the numerator.
Tap for more steps...
Step 7.2.6.1
Multiply by .
Step 7.2.6.2
Move to the left of .
Step 7.2.6.3
Add and .
Step 7.3
Multiply both sides of the equation by .
Step 7.4
Simplify both sides of the equation.
Tap for more steps...
Step 7.4.1
Simplify the left side.
Tap for more steps...
Step 7.4.1.1
Cancel the common factor of .
Tap for more steps...
Step 7.4.1.1.1
Cancel the common factor.
Step 7.4.1.1.2
Rewrite the expression.
Step 7.4.2
Simplify the right side.
Tap for more steps...
Step 7.4.2.1
Cancel the common factor of .
Tap for more steps...
Step 7.4.2.1.1
Factor out of .
Step 7.4.2.1.2
Cancel the common factor.
Step 7.4.2.1.3
Rewrite the expression.
Step 8
Find the period of .
Tap for more steps...
Step 8.1
The period of the function can be calculated using .
Step 8.2
Replace with in the formula for period.
Step 8.3
is approximately which is positive so remove the absolute value
Step 8.4
Multiply the numerator by the reciprocal of the denominator.
Step 8.5
Move to the left of .
Step 9
The period of the function is so values will repeat every radians in both directions.
, for any integer
Step 10
Consolidate the answers.
, for any integer